• 제목/요약/키워드: Pump performances

검색결과 145건 처리시간 0.019초

Investigation of Amplifying Mechanism in an t-Band Erbium-Doped Fiber Amplifier Pumped by a 980 nm Pump

  • Lee, Dong-Han;Lee, Han-Hyub;Oh, Jung-Mi;Kim, Byung-Jun
    • Journal of the Optical Society of Korea
    • /
    • 제7권2호
    • /
    • pp.67-71
    • /
    • 2003
  • For a more detailed understanding of the mechanism of an L-band erbium-doped fiber amplifier, we investigated 980 nm absorption, signal amplification and forward and backward amplified spontaneous emission along the erbium-doped fiber. In addition, we compared performances of the erbium-doped fiber amplifier with and without a fiber Bragg grating.

혈액 펌프의 기계적 성능과 생체 역학적 성능에 대한 연구 (INVESTIGATION ON MECHANICAL AND BIO-MECHANICAL PERFORMANCE OF A CENTRIFUGAL BLOOD PUMP)

  • 장민욱;;허남건;강성원;김원정;강신형
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.88-95
    • /
    • 2015
  • Blood pump analysis process includes both mechanical and bio-mechanical aspects. Since a blood pump is a mechanical device, it has to be mechanically efficient. On the other hand, blood pumps function is sensitively related to the blood recirculation; hence, bio-factors such as hemolysis and thrombosis become important. This paper numerically investigates the mechanical and bio-mechanical performances of the Rotaflow in the extracorporeal membrane oxygenation(ECMO), Ventricular Assist Device(VAD), and full-load conditions. The operational conditions are defined as(400[mmHg], 5[L/min.]), (100[mmHg], 3[L/min.]), and (600[mmHg], 10[L/min.]) for ECMO, VAD, and full-load conditions, respectively. The results are presented and analyzed from the mechanical aspect via performance curves, and from bio-mechanical aspect via focusing on hemolytic characteristics. Regions of top and bottom cavities show recirculation in both ECMO and VAD condtions. In addition, Eulerian-based calculation of modified index of hemolysis(MIH) has been investigated. The results demonstrate that the VAD condition has the least risk of hemolysis among the others, while the full-load condition has the highest risk.

Experimental Investigation of Blade-To-Blade Pressure Distribution in Contra-Rotating Axial Flow Pump

  • Cao, Linlin;Watanabe, Satoshi;Honda, Hironori;Yoshimura, Hiroaki;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권4호
    • /
    • pp.130-141
    • /
    • 2014
  • As a high specific speed pump, the contra-rotating axial flow pump with two rotors rotating reversely has been proved with higher hydraulic and cavitation performance, while in our previous researches, the potential interaction between two blade rows was distinctly observed for our prototype rotors designed with equal rotational speed for both front and rear rotors. Based on the theoretical and experimental evidences, a rotational speed optimization methodology was proposed and applied in the design of a new combination of contra-rotating rotors, primarily in expectation of the optimized blade pressure distributions as well as pertinently improved hydraulic performances including cavitation performance. In the present study, given one stationary and two rotating frames in the contra-rotating rotors case, a pressure measurement concept taking account of the revolutions of both front and rear rotors simultaneously was adopted. The casing wall pressure data sampled in time domain was successfully transferred into space domain, by which the ensemble averaged blade-to-blade pressure distributions at the blade tip of two contra-rotating rotors under different operation conditions were studied. It could be seen that the rotor pair with the optimized rotational speed combination as well as work division, shows more reasonable blade-to-blade pressure distribution and well weakened potential interaction. Moreover, combining the loading curves estimated by the measured casing wall pressure, the cavitation performance of the rotor pairs with new rotational speed combination were proved to be superior to those of the prototype pairs.

Vuilleumier열펌프용 재생기 특성 해석 (Analysis on the Regenerator Characteristics for a Vuilleumier Heat Pump)

  • 유호선
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1572-1583
    • /
    • 1993
  • 본 연구는 VM열펌프를 구성하는 2개 재생기의 특성을 동시에 고려하여 해석하 고자 시도되었다. 먼저, 기존의 유동 및 열전달모델들을 비교, 검토하여 VM열펌프용 재생기 특성에 부합되는 해석모델을 선정한다. 선정된 해석모델을 2차해석법(second -order method)의 개념에 의거, 실제 열펌프에 적용하여 작동조건 및 설계인자에 따른 재생기의 성능변화를 고찰한다. 여기서 2차해석법의 개념은 이상화된 전체시스템에 대한 해석결과로부터 압력, 질량유량 등 필요한 기본변수를 구하여 이들을 재생기특성 해석에 적용하는 접근방법으로서 재생기특성과 작동유체거동 사이의 상호작용은 고려 되지 않는다. 해석과정에서의 구체적인 계산은 각 구성요소에 대한 제원이 비교적 상세히 공개된 Schulz열펌프를 대상으로 수행하며 전술한 기본변수는 이미 발표된 VM사이클에 대한 단열해석법으로부터 구한다.

시뮬레이션을 통한 지열 히트펌프 시스템과 VRF 시스템의 에너지 성능비교 (Comparison of Energy Performance between Ground-Source Heat Pump System and Variable Refrigerant Flow(VRF) Systems using Simulation)

  • 손병후;임효재;강성재
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.30-40
    • /
    • 2021
  • This paper compares the annual energy performance of four different types of air-conditioning systems in a medium-sized office building. Chiller and boiler, air-cooled VRF, ground-source VRF, and ground-source heat pump systems were selected as the systems to be compared. Specifically, the energy performance of the GSHP system and the ground-source VRF system were compared with each other and also with conventional HVAC systems including the chiller and boiler system and air-cooled VRF system. In order to evaluate and compare the energy performances of four systems for the office building, EnergyPlus, a whole-building energy simulation program, was used. The EnergyPlus simulation results show that both the GSHP and the ground-source VRF systems not only save more energy than the other two systems but also significantly reduce the electric peak demand. These make the GSHP and the VRF systems more desirable energy-efficient HVAC technologies for the utility companies and their clients. It is necessary to analyze the impact of partial load performance of ground-source heat pump and ground-source VRF on the long-term (more than 20 years) performance of ground heat exchangers and entire systems.

소형/고효율 고분자전해질 연료공급모듈용 Air Blower 개발에 관한 연구 (Study on Air Blower for Air Management System)

  • 최준혁;정인성;김주한;서정무;허진;성하경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.212-214
    • /
    • 2006
  • Air Management System is composed by Pump, Fan, Compressor and Blower In general their performances depend on the capability of the motor, power converter device and controller. Especially, it should be noticed upon designing Air Management System using for Fuel Cell System, that Pump, Fan, Compressor and Blower satisfy the condition of the high performance, high efficiency, high density and reasonable price considering the safety and Economic Efficiency. In order for this, it should be studied that which kind of Motor is the most suited for Air Management System for Fuel Cell, such as Induction Motor, Brushless DC Motor, and Switched Reluctance Motor which is widely using in industry. This paper presents the designing and manufacturing of Outer Rotor Type BLDC Motor and Driver for Air Blower of Air Management System. Experimental results from a laboratory prototype arc presented to validate the feasibility of the proposed Air Blower Motor and Driver.

  • PDF

콘덴싱가스보일러 제어를 위한 공급수알고리즘 (The Supply Water Algorithm for a Condensing Gas Boiler Control)

  • 한도영;유병강
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.441-448
    • /
    • 2011
  • The energy consumption of a condensing gas boiler may be greatly reduced by the effective operation of the unit. In this study, the supply water algorithm for a condensing gas boiler control was developed by using the fuzzy logic. This includes the supply water set temperature algorithm, and the control algorithms of a gas valve, a blower and a pump. For the set temperature algorithm, the outside air temperature and the return water temperature were used as input variables. The supply water temperature difference and its slope were used as input variables of the gas valve and blower control algorithm. And the supply water temperature and the return water temperature were used as input variables of the pump control algorithm. In order to analyse performances of these algorithms, the dynamic model of a condensing gas boiler was used. The initial start-up test, the supply water set temperature change test, the outside air temperature change test, and the return water temperature change test were performed. Simulation results showed that algorithms developed in this study may be practically applied for the effective control of a condensing gas boiler.

트윈로터리 압축기 적용 냉방 및 급탕 겸용 이산화탄소 시스템의 성능특성에 관한 연구 (Performance Characteristics of a CO2 Cooling and Water Heating System with a Twin-rotary Compressor)

  • 조홍현;이호성;백창현;김용찬;조성욱
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.230-237
    • /
    • 2008
  • The objective of this paper is to investigate the performance characteristics of a $CO_2$ cooling and water heating system using a twin-rotary compressor with the compression volume ratio of 0.6. The cooling performances of the $CO_2$ heat pump were measured and analyzed with the variations of charge amount, EEV opening, and compressor frequency. In addition, the performance of the combined system including cooling and water heating was also measured and analyzed by varying inlet temperature of the EEV. As a result, the optimal normalized charge and cooling COP in the cooling mode were 0.307 and 2.06, respectively. The application of the water heating into the $CO_2$ heat pump improved the cooling performance over 78% and decreased the EEV inlet temperature by $8^{\circ}C$, which can increase system reliability.

지역 기후가 유닛형 지중열교환기 성능에 미치는 영향 (Analysis on the Effect of Local Climate on the Unit-type Ground Heat Exchanger)

  • 배상무;김재민;남유진
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.67-76
    • /
    • 2019
  • A ground source heat pump (GSHP) system can stable system operation by using underground heat source and has high reliability for energy production. However, wide-spread of the GSHP system is delayed to high initial investment costs. In previous studies, horizontal and unit-type ground heat exchanger (GHX) have developed to overcome disadvantages such as high initial cost. However, these performances of GHXs are greatly influenced by climate and weather conditions. It is necessary to analyze the performance of GHX according to the ground temperature change in the installation site. In this study, the ground temperature of each installation site confirmed and performance of unit-type GHX quantitatively analyzed by numerical analysis. As the result, the performance of the unit type GHX was 33.9 W/m in Seoul, 34.2 W/m in Daejeon, and 37.2 W/m in Busan.The result showed the difference performance of GHX according to local climate was maximum of 9.7%.

엔진 냉각시스템 성능해석에 관한 연구 (The Study about the Performance-Analysis of a Automotive Engine Cooling System)

  • 신창훈;이승희;박원규;장기룡
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.39-48
    • /
    • 2006
  • An engine cooling system affects overall performances of an engine which has been recently requested higher power in more confined engine room. The design of efficient cooling system demands a great effort to effectively correlate with each components, such as water jacket, radiator, coolant pump, cooling fan, etc. Thus, the aim of this study is to provide the design tool of the cooling system in the early design stage by enabling for the designer to accurately predict the engine cooling performances. This user-friendly design tool has various ways to assemble each components and control the running condition with related database. The present design tool was simulated and compared with experimental data. As a result, the inlet and outlet temperature of the radiator agree very well with experiments. It was concluded that the present design tool could be effectively used for the design of the engine cooling system.