• 제목/요약/키워드: Pump it up

검색결과 185건 처리시간 0.03초

양방향펌프와 편로드실린더에 의한 리프터의 구동에 관한 연구 (Study for the Actuation of Lifter by the Bi-Directional Pump and Single-Rod Cylinder)

  • 이성래;김제민
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.139-145
    • /
    • 2007
  • The motion of single-rod cylinder is typically controlled by the directional control valve. In some case, the hydraulic system should be energized by the man power and at the same time the motion of a cylinder is controlled manually. It may be confusing for a man to do two things at the same time. The solution is to make up the closed hydraulic circuit with the bi-directional pump and single-rod cylinder without using a directional control valve. In the case of single-rod cylinder, the flows at the rod side and head side are so different that several valves should be installed to make the motion of single-rod cylinder possible. The hydraulic system is composed of a bi-directional pump, a single-rod cylinder, pilot operated check valves, a check valve and a counter balance valve for the purpose of actuating the lifter. The characteristics of a suggested system are analysized mathematically and numerically.

확장칼만필터를 사용한 사판식 피스톤펌프의 파라메타 추정 (Estimation of Parameters in a Swash Plate type Piston Pump Using the Extended Kalman Filter)

  • 허준영
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1989-1996
    • /
    • 2002
  • Extended Kalman Filter(EKF) is used to estimate friction and spring characteristics on the swash plate of a variable displacement pump. In earlier studies, the feasibility of the approach was established using simulation studies to establish limits of accuracy for the EKF approach when it was applied to an ideal situation. In this study, the EKF is applied to an experimental system and the issue of re liability in estimation of certain pump parameters is addressed. In addition, an approach to assign values to accommodate convergence of the EKF is considered. A special experimental system was set up to facilitate the measurement of certain states to enhance the EKF approach. Estimated parameters show ed some scatter about a specified operating point but in general, were reasonably repeatable. The study also showed that changes in the system parameters could be accurately tracked.

소형 외접기어펌프를 사용하는 EHA의 시스템 효율 분석 (Investigation of System Efficiency of an Electro-hydrostatic Actuator with an External Gear Pump)

  • 김종혁;홍예선
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.15-21
    • /
    • 2019
  • In this study, the maximum system efficiency of the electro-hydrostatic actuators was experimentally investigated, where small size external gear pumps with volumetric displacement under 1.3 cc/rev were combined with a 400W servomotor as the prime mover. Since the efficiency data of the servomotor, gear pumps and hydraulic cylinder were not provided by the suppliers, experimental apparatuses for their efficiency measurement were extra built up. When a gear pump with a volumetric displacement of 1.27cc/rev was used on an electro-hydrostatic actuator system, the maximum system efficiency was not higher than 70%. This was because the most effective operation ranges of the motor and pump did not coincide each other. In order to match their operation ranges as one of the most crucial design factors, a speed reduction mechanism can be used, such as a timing belt. It was shown in the study that the maximum system efficiency could be increased from 70% to 76% in that way.

미활용 에너지원으로서의 지하철 배열이용에 관한 연구 (Research on using the exhausted heat from subway tunnel as unused energy)

  • 김종렬;금종수;최광환;윤정인;박준택;김동규;김보철;정용현
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.695-701
    • /
    • 1998
  • Researches on unused energy are being continued because of the limited fossil fuel and the destruction of environment. Therefore this study was peformed as follows. The collectable amount of exhausted heat for an air-conditioning was calculated by the subway thermal environment prediction program. And the electric power needed by conventional heat source equipments was compared with one by unused heat source equipments when the exhausted heat was used by heat pump in heating and hot water supplying. The results are summarized as follows; 1) Forced ventilation should be conducted to keep optimal temperature in subway tunnel in summer as well as in winter. According to the simulation, temperature in tunnel was higher than that on the ground in summer when the forced ventilation was conducted only in winter. 2) Ventilating time should be calculated out to the optimal condition for not only saving power of ventilation fan but reusing exhausted heat. By the simulation, it is certain that the exhausted heat should be eliminated in air-conditioning time. 3) The use of exhausted heat source heat pump could save 8% of electric power per hour in comparison with existing heat pump. It was based on a present heat generation and traffic for ventilating time of general air-conditioning, but could be different by ventilating time. 4) As the traffic increases up to 1.5 or 2 times, electric power consumption of the conventional heat pump increases to 11% or 13.5% per mean hour in comparison with that of the exhausted heat source heat pump, though all-day ventilation.

  • PDF

COMPUTATIONAL STUDY OF THE DRIVER GAS COMPRESSION PROCESS IN THE BALLISTIC RANGE

  • Rajesh, G.;Kang, H.G.;Kim, H.D.
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2775-2780
    • /
    • 2007
  • The ballistic range has long been employed in a variety of engineering fields such as high-speed impact engineering, projectile aerodynamics and aeroballistics, since it can create very high-pressure states in a short time. Since the operation of the ballistic range includes many complicated processes, each should be studied in detail for the best operation of the device. One of the main processes which have a major influence in its operation is the compression of the driver gas. Most of the studies available in this field hardly discuss this process in detail and thus lack a proper understanding of its effect. In the present study, a computational analysis has been made to investigate the compression process in the pump tube of a ballistic range. The results obtained are validated with some experimental data. It is seen that the pump tube parameters and the piston mass significantly affect the compression process and the time to build up the required diaphragm rupture pressure.

  • PDF

수직형 다단축의 축 정열 오프셋 자동 측정시스템 개발 (A Study on the Development of Automatic Measuring System on the Alignment Offset of the Vertical Multistage Shaft)

  • 박호철;김문영;이현
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.922-928
    • /
    • 1998
  • This paper presents the automatic alignment measuring system for improving the accuracy and working time of alignment of large vertical hydraulic pump turbine. It is general practice that rotating shaft should run within acceptable vibration limit. In order to obtain better run-out data of multi-stage rotor, careful and accurate alignment approach must be established. Generally, present alignment procedure are required several iterative works and so many manpower. Therefore, the new system has been developed using a vector calculation algorithm, laser sensor and data acquisition devices. As a result of appling to actual machines, it is confirmed that manpower is saved up to an average 90%.

  • PDF

EHA용 가변용적형 사판식 유압 피스톤 펌프의 하이브리드 제어 (Hybrid control of the swash plate-type variable displacement hydraulic piston pump for an EHA)

  • 권용철;홍예선
    • 한국항공우주학회지
    • /
    • 제41권4호
    • /
    • pp.291-298
    • /
    • 2013
  • 본 논문에서는 압력보상형 사판식 유압 피스톤 펌프와 밸브 제어형 실린더를 결합한 EHA에 대하여 유압 실린더의 소비 유량이 작으면 펌프 회전 속도를 낮추는 새로운 개념의 하이브리드형 제어 시스템을 제안하였다. 펌프 내 압력조절기의 사판각 제어와 간섭을 피하기 위해 위치 명령 신호의 속도 성분 평균치를 이용하여 펌프의 회전속도를 조절하였고, 시스템 압력이 기준치 이하로 낮아지는 것을 방지하기 위해 압력 스위치 기능을 추가하였다. 시뮬레이션과 실험 결과에 의하면, EHA의 동적인 응답 특성에 영향을 주지 않는 조건에서 하이브리드 제어를 통해 공전 모드에서의 펌프 회전속도를 1,800rpm에서 600rpm로 낮춤으로써 하이브리드 제어를 안 할 경우에 비해 펌프 구동 동력을 약 44%까지 절감시킬 수 있음을 확인하였다.

비 막힘형 수중 펌프 임펠러 형상이 펌프 성능에 미치는 영향 (Effects of Impeller Shape of Submersible Nonclogging Pump on its Performance)

  • 윤정의
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1201-1207
    • /
    • 2012
  • 본 연구에서는 15kW 모터로 구동되는 $5m^3$/min의 유량을 고효율로 공급할 수 있는 2엽 비막힘형 수중 펌프의 임펠러를 설계하는 것을 목표로 임펠러 출구 위치 변화($h_I$), 출구 폭($b_2$) 및 허브 프로파일이 펌프 성능에 미치는 영향을 상용 해석용 프로그램 ANSYS CFX를 사용한 전산해석을 통해 수행하였다. 해석 결과, 임펠러 출구 위치 변화($h_I$) 및 출구 폭($b_2$)이 증가하면 양정 및 축동력의 경우는 $h_I$, $b_2$와 함께 지속적으로 증가하지만 효율의 경우는 $h_I$=38 mm, $b_2$=55 mm 까지만 증가하며, 그 이상의 값에서는 일정한 값을 가짐을 보여준다. 그리고 허브 프로파일의 변화는 상대적으로 임펠러 성능에 큰 영향을 미치지는 않는다.

Effects of Volute Throat Enlargement and Fluid Viscosity on the Performance of an Over Hung Centrifugal Pump

  • Khoeini, Davood;Riasi, Alireza;Shahmoradi, Ali
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.30-39
    • /
    • 2017
  • In the current study, identifying regimes and behaviors of the various viscous fluids in a typical horizontal single-stage centrifugal pump and improving its performance by enhancing volute throat area have been surveyed numerically and experimentally. Indeed the initial pump had insufficient head at BEP (Best Efficient Point) in relevant applications. In order to solve this problem, the method of increasing the volute throat area on the prototype was used in steps and eventually the increased head values have been achieved. Then modified centrifugal pump, that has been constructed based on the modified control volume from numerical results, has been tested thoroughly. The maximum head and efficiency discrepancy between numerical and experimental results in BEP were 1.4 and 2.6% respectively. The effects of viscous fluids, from 1 cSt to 500 cSt, on the performance curves of centrifugal pump have been investigated as well and results showed that viscous fluids has significant effect on them. Indeed the highest head and efficiency in the same conditions at BEP has been obtained in viscosity 1 cst which was by 19.2% and 44% greater than the viscosity 500 cSt. It is also found that the highest viscous fluid had the highest energy consumption as the absorbed power of highest viscous fluid, 500 cSt, increased up to approximately 55% above the lowest viscous fluid, 1 cSt, values.

지열원히트펌프를 활용한 도로융설시스템의 성능 평가 및 예측 (An Evaluation and Prediction of Performance of Road Snow-melting System Utilized by Ground Source Heat Pump)

  • 최덕인;황광일
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.138-145
    • /
    • 2012
  • Because of the climate changes and the development of building technologies, the cooling loads have been increased. Among the various renewable energies, geothermal energy is known as very useful and stable energy for heating and cooling of building. This study proposes a road snow-melting system of which heat is supplied from GSHP(Ground source heat pump) in viewpoint of the initial investment and annual running performance, which is also operating as a main facility of heating and cooling for common spaces. The results of this study is as followings. From the site measurement, it is found out that the road surface temperature above the geothermal heating pipe rose up to $5^{\circ}C$, which is the design temperature of road snow-melting, after 2 hours' operation and average COP(Coefficient of performance) was estimated as 3.5. The reliability of CFD has confirmed, because the temperature difference between results of CFD analysis and site measurement is only ${\pm}0.4^{\circ}C$ and the trend of temperature variation is quite similar. CFD analysis on the effect of pavement materials clearly show that more than 2 hours is needed for snow-melting, if the road is paved by ascon or concrete. But the road paved by brick is not reached to $5^{\circ}C$ at all. To evaluate the feasibility of snow-melting system operated by a geothermal circulation which has not GSHP, the surface temperature of concrete-paved road rise up to $0^{\circ}C$ after 2 hour and 40 minutes, and it does never increase to $5^{\circ}C$. And the roads paved by ascon and brick is maintained as below $0^{\circ}C$ after 12 hours geothermal circulation.