• Title/Summary/Keyword: Pump Speed Controlled System

Search Result 53, Processing Time 0.019 seconds

Comparative Characteristic Analysis of a Hydraulic Control System Using a Speed Controlled Hydraulic Pump (유압펌프 회전속도 제어방식 유압제어시스템의 특성 비교 분석)

  • Jeong, H.S.;Jeong, S.W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.3
    • /
    • pp.13-19
    • /
    • 2010
  • Hydraulic systems are widely used as a power transfer and/or power control system due to its flexibility, controllability, accuracy and high power density. Valve controlled and/or pump capacity controlled systems are normally adopted as a control device, but nowadays pump speed controlled systems are emerging as a new energy-efficient hydraulic control system. In this paper the pump speed controlled system for the cylinder position control of a counter balance circuit is investigated by simulation study and position control experiments were carried out. As a result, the possibility and efficiency of the pump speed controlled system were verified.

  • PDF

Path Control with Energy-Saving Load-Sensing for a Cylinder-Load System Using Speed-Controlled Fixed Displacement Pump (속도제어-정용량 펌프를 사용하는 실린더-부하계의 에너지절약-부하감지형 경로제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.3
    • /
    • pp.16-22
    • /
    • 2009
  • This paper deals with the issue of robust position tracking control and energy-saving control for a valve-controlled cylinder system using speed-controlled fixed displacement pump. The whole feedback control system is composed of a pair of interconnected subsystems, that is, valve-controlled cylinder system and load-sensing control system. From experiments it is shown that position tracking control in the load sensing control system can accomplish significant reduction in input energy to pump comparing to a conventional valve-controlled cylinder system, while exhibiting the same position tracking control accuracy.

  • PDF

A Study on Speed Control of Hydrostatic Transmission Using High Speed Solenoid Valve (고속전자밸브를 이용한 유압전동장치의 속도 제어에 관한 연구)

  • Park, S.H.;Lee, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.148-157
    • /
    • 1995
  • This study deals with controlling the speed of Hydrostatic Transmission (HST) system throuth the control of pumping stroke of positive displacement pump using high-speed solenoid valve controlled by digital closed loop PWM method. The method which was done in this study is as follows: First, we modified original positive displacement pump and designed pumping stroke control system of HST by using the high-speed solenoid valve. Second, after experimenting static and dynamic characteristics on each signal flow, we identified system parameter of approximated model. Finally, to control the speed of HST, we controlled the angle of the swash plate of positive displacement pump by controlling the pressure in the control cylinder chamber. Test which was carried out in the laboratory shows that transient and steady state response could be improved by PID controller.

  • PDF

Trajectory Tracking Control of Injection Molding Cylinder Driven by Speed Controlled Hydraulic Pump (속도제어-유압펌프에 의하여 구동되는 사출성형 실린더의 궤적추적제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.21-27
    • /
    • 2007
  • This paper deals with the issue of trajectory tracking control of a clamping cylinder for injection moulding machine, which is directly driven by speed controlled hydraulic pump in combination with AC servomotor. As a fundamental step prior to tracking controller design, feedback control system is developed by implementing a position control loop parallel with a system pressure control loop. A sliding mode controller combining velocity feedforward scheme is developed for enhancing the tracking performance. Consequently a significant reduction in tracking error is achieved for both position and pressure control applications.

  • PDF

Capacity Modulation of a Multi-Type Heat Pump System Using PID Control (PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 정대성;김민성;김민수;이원용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.446-475
    • /
    • 2000
  • Performance of a water-to-water multi-type heat pump system using R22 has been experimentally investigated. Total refrigerant flow rate was adjusted with a variable speed compressor and the refrigerant flow rate for two indoor units were controlled by electronic expansion valves. Evaporator outlet pressure of refrigerant and indoor unit outlet temperatures of secondary fluid were selected as controlled variables. Experiments were carried out for both cooling and heating modes using PID control method. Results show that the multi-type heat pump system can be adequately controlled by keeping control gains at certain levels for various operating conditions.

  • PDF

Design of Variable Speed SRM Drive for Hydraulic Pump Application (유압펌프용 가변속 SRM 구동시스템 설계)

  • Lee, Ju-Hyun;Kim, Bong-Chul;Lee, Zhen-Guo;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.555-557
    • /
    • 2005
  • This paper proposed a hydraulic pump system that is driven by a variable SR drive. The operating pressure of hydric pump is limited by the pump speed and the mechanical structure. The operating of hydraulic pump is separated as constant pressure and constant flow region. Under fixed speed, the pressure can be controlled as constant value, and then decreased by increasing of pump speed. A 2.2[kW], 12/8-pole SR motor and DSP based digital controller are designed and tested for hydraulic pump system. The test results show that the system has some good features such as high efficiency and high response characteristics.

  • PDF

Reduction of Power Consumption for Constant Pressure Control of Variable Swash Plate-type Piston Pump by Varying the Pump Speed (가변 용적형 사판식 피스톤 펌프의 회전 속도 조절에 의한 정압 제어 소비 동력 절감)

  • Kim, J.H.;Hong, Y.S.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.53-60
    • /
    • 2014
  • This paper proposes a control scheme to reduce the power consumption of a variable displacement swash-plate type piston pump supplying oil to a valve-controlled hydraulic cylinder at constant pressure. Whenever flow rate demand was absent, the swash plate angle and the pump speed were changed to the minimum values required to compensate for the internal leakage flow. In response to command signals, the pump speed was changed in proportion to the absolute mean value of the speed component for position commands. At the same time, a pressure regulator was activated to maintain constant system pressure by precisely adjusting the pump speed with the swash plate angle fixed at the maximum. The conventional system consisting of a pressure-compensated variable displacement type pump is driven at a constant speed of 1,800rpm. By comparison, computer simulation and experimental results showed that idling power at stand-by status could be reduced by up to 70% by reducing the pump speed from 1,800rpm to 300rpm and the swash plate angle to the minimum.

Capacity Modulation of a Multi-Type Heat Pump System using PID Control with Fuzzy Logic (퍼지 로직 적용 PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 김세영;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.810-817
    • /
    • 2001
  • Performance of a water-to-water multi-type heat pump system using R22 which has tow indoor units has been investigated experimentally. The refrigerant flow rate of each indoor unit was regulated by an electronic expansion valve and the total refrigerant flow rate of the system was controlled by a variable speed compressor. In the system, evaporator outlet pressure of refrigerant and outlet temperatures of secondary fluid from indoor units were selected as control variables. Experiments were executed for both cooling and heating modes using PID control method with fuzzy logic, and results of the test are compared with a classical PID method. In the case of PID control with fuzzy logic, the fuzzy control rules corrects PID parameters each time. Results show that PID control with fuzzy logic has the merits of quick response and reduced overshoot.

  • PDF

A Study of Flow Characteristics through the Speed Control and Flow Resistance (유로저항에따른 속도제어를 통한 Zone별 유량특성 연구)

  • Oh, Byung-Kil;Kim, Hway-Suh
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.762-768
    • /
    • 2011
  • We use floor radiant heating system in the house of commons in winter Floor radiant heating system, which transfer heat by radiation, is one of the energy efficient and comfortable systems that. Floor radiant heating system is configured to be controlled by the room for energy-saving. Proper flow rate to a comfortable heating in the room is important. However, Using a constant speed circulation pump in separate rooms, heating system may cause an imbalance because of the difference of length of coil when operating in the rooms. In this study, our Research team examined heating imbalance due to the variation length through the coil length changes and flow control of the circulation pump.

Development of Pump-Drive Turbine with Hydrostatic Bearing for Supercritical CO2 Power Cycle Application (정압 베어링을 적용한 초임계 CO2 발전용 펌프-구동 터빈 개발)

  • Lee, Donghyun;Kim, Byungock;Park, Mooryong;Yoon, Euisoo
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, we present a hydrostatic bearing design and rotordynamic analysis of a pump-and-drive turbine module for a 250-kW supercritical CO2 cycle application. The pump-and-drive turbine module consists of the pump and turbine wheel, assembled to a shaft supported by two hydrostatic radial and thrust bearings. The rated speed is 21,000 rpm and the rated power is 143 kW. For the bearing operation, we use high-pressure CO2 as the lubricant, which is supplied to the bearing through the orifice restrictor. We calculate the bearing stiffness and flow rate for various orifice diameters, and then select the diameter that provides the maximum bearing stiffness. We also conduct a rotordynamic analysis based on the design parameters of the pump-and-drive turbine module. The predicted Campbell diagram shows that there is no critical speed below the rated speed, owing to the high stiffness of the bearings. Furthermore, the predicted damping ratio indicates that there is no unstable mode. We conduct the operating tests for the pump and drive turbine modules within the supercritical CO2 cycle test loop. The pressurized CO2, at a temperature of 136℃, is supplied to the turbine and we monitor the shaft vibration during the test. The test results show that there is no critical speed below the rated speed, and the shaft vibration is controlled to below 3 ㎛.