• 제목/요약/키워드: Pump Characteristics

검색결과 1,439건 처리시간 0.029초

기액 이상류시의 원심펌프특성에 관한 실험적 연구 (An Experimental Study on the Centrifugal Pump Characteristics in Air-Water Two-Phase Flow)

  • 김성윤;이상일;김유택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권6호
    • /
    • pp.685-692
    • /
    • 2006
  • In a general centrifugal pump, if it is operated in a two-phase flow the activity of the impeller usually degrades and occasionally losses its function. However, the effect of break down of centrifugal pump due to entrained air has not been clarified yet. This paper shows the air-water two-phase flow characteristics of closed type and semi-open type impellers. In a sing1e-phase flow, closed-type impeller has higher efficiency and head. But in air-water two-phase flow semi-open type impeller's rates of decreases of efficiency and head are decreased.

유압전동장치의 유량 압력맥동 특성 (Flow and Pressure Ripple Characteristics of Hydrostatic Transmissions)

  • 김도태;윤인균
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.120-126
    • /
    • 2001
  • This study deals with a flow and pressure ripple characteristics for a hydrostatic transmission(HST) consisting of a vari-able axial piston pump connected in an open loop to a fixed displacement axial piston motor. These flow ripples produced by pump and motor in HST interacts with the source impedances of the pump or motor and dynamic characteristics of the connected pipeline, and results in a pressure ripples, Pressure ripples. Pressure ripples in HSP is major source of vibration, which can lead to fatigue failure of components and cause noise. In this paper, the flow ripples generated by a swash plate type axial piston pump or motor in HST are measured by making use of hydraulic pipeline dynamics and the measured pressure data at two points along the pipeline. By using the self-checking functions, the validity of the method us investigated by comparison with the measured and estimated pressure ripples at the halfway section of the pipeline, and good agreement is achieved.

  • PDF

A Study on the Characteristics of Volumetric Efficiency of an Axial Piston Pump considering Piston Tilting

  • Park, In-Kyu;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • 제10권1_2호
    • /
    • pp.37-42
    • /
    • 2009
  • This paper presents the characteristics of volumetric efficiency of an axial type piston pump considering the piston tilting. A numerical analysis is carried out in order to obtain the pressure distribution considering the fluid inertia at the notch of the valve plate. The cylinder pressure variation and the discharge flow rate are measured experimentally according to the operating conditions such as supply pressure, rotational speed, and viscosity of the working fluid by using the cam type test apparatus. Leakage is also measured considering piston tilting. The characteristics of the volumetric efficiency are analyzed with respect to various operating conditions and leakage is also analyzed according to the piston tilting angle. Results are applicable to improve the design of an axial type piston pump.

회전용적형 기어펌프 유동의 2차원 수치해석 (Two-dimensional numerical simulation of volumetric gear pump flow)

  • 이중호;박종원;김태구;이상욱
    • 한국유체기계학회 논문집
    • /
    • 제13권5호
    • /
    • pp.17-21
    • /
    • 2010
  • A volumetric gear pump is often used in extensive industrial applications to provide both high pressure and sufficiently high flow rate by physical displacement of finite volume of fluid with each revolution. To better understand the unsteady flow characteristics within the pump, numerical simulations were conducted by using moving dynamic meshing (MDM) techniques in commercially available CFD software, FLUENT. The effects of rotor clearance size and rotational speed of rotor on the flow characteristics, specially the temporal variation of velocity and pressure field, which is a main source of flow noise, was investigated. The results showed that significant reverse flow is developed in the rotor clearance and that its size is one of the most important factors affecting flow characteristics and pressure pulsation.

해수와 청수환경에서 선박용 원심펌프 임펠러 재료의 캐비테이션 특성 (Cavitation Characteristics on Impeller Materials of Centrifugal Pump for Ship in Sea Water and Fresh Water)

  • 임명환
    • Corrosion Science and Technology
    • /
    • 제10권6호
    • /
    • pp.218-224
    • /
    • 2011
  • The fresh water and sea water in present ships is used as cooling water for marine engine. Therefore, corrosion damage in seawater system is frequently occurred. In particular, in the impeller of pump, the performance and material span due to the corrosion and cavitation erosion has adverse effects. Most of the pump impellers in vessels are used Cu-Al alloy. Cu-Al alloy which having the excellent mechanical properties and corrosion resistance is widely used in marine environments. However, despite the excellent characteristics, the periodic replacement parts due to the cavitation damage in seawater is vulnerable to economic viewpoint. In this study, Cu-Al alloy used with impeller for centrifugal pump were conducted various experiments to evaluate its characteristics in seawater and fresh water solutions. As an electrochemical result, the dynamic conditions that exposed to the cavitation environment presented high corrosion current density with collapse of the cavity compared with the static conditions. Cavitation test results, the weightloss and weightloss rate in fresh water are observed more than those of seawater.

베인 펌프 설계인자 변화에 따른 내부 유동 해석 (Numerical Study on Effects of Design Factors on Flow Characteristics of a Vane Pump)

  • 이상혁;허남건
    • 한국유체기계학회 논문집
    • /
    • 제10권6호
    • /
    • pp.24-31
    • /
    • 2007
  • In the present study, the effects of the design factors and operating conditions on flow characteristics of a vane pump for the automotive power steering system has been analyzed numerically. An unsteady moving mesh technique with cell expansion/contraction method is used to simulate the rotation of vanes with respect to stationary inlet and outlet. As a result, the flow characteristics of the flow rate and pressure rise across the vane pump were obtained. The numerical analyses for the various design factors such as number of vanes and thickness between the rotor and camring and for various operating conditions such as rotational speed and pressure difference between inlet and outlet were extensively performed. And the results were discussed in the paper.

Hexagonal reciprocating pump: advantages and weaknesses

  • Stanko, Milan;Golan, Michael
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권3호
    • /
    • pp.121-136
    • /
    • 2013
  • This paper reports the 1-D fluid transient simulation results of the discharge flow conditions in a 6-cylinder reciprocating slurry pump. Two discharge manifold configurations are studied comparatively; a case with a hexagon shaped discharge manifold where each cylinder discharges at a single vertex, and a case where all the cylinders discharges are lumped together into a tank shaped manifold. In addition, the study examines the effect of two pulsation mitigation measures in the case of hexagonal manifold; a single inline orifice in one of the hexagon sides and a volumetric dampener at the manifold outlet. The study establishes the pressure and flow fluctuation characteristics of each configuration and decouples the pulsation characteristics of the pump and the discharge manifold.

진동응답 측정에 의한 이중 벌류트형 양흡입 원심펌프의 동적특성 (Dynamic Characteristics of the Double Volute Double Suction Centrifugal Pump Using Measured Vibration Data)

  • 최복록;박진무
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.500-507
    • /
    • 2000
  • Dynamic forces due to mechanical and hydraulic related causes are always exerted on operating turbomachinery such as centrifugal pumps. To ensure the safety and the reliability of the pump. the magnitudes of the vibration must be kept within an acceptable limit. The focus of this paper is on the identification of the vibration behavior and the quantitative analysis of the hydraulic excitation forces. As the structure becomes more complex finite element analysis is essential to accurately predict the vibration characteristics and the excitation forces, This paper presents an experimental and analytical technique to find and solve to vibration problems in double volute double suction centrifugal pump. Measured vibration data due to the dynamic forces are presented and individual causes are identified, finally excitation forces of the pump are inversely estimated at each frequency on operating conditions.

  • PDF

지열 히트펌프 시스템의 계절별 지중 열교환 특성 및 지반내 온도 변화 (Temperature monitoring and seasonal borehole heat exchange rate characteristics of a geothermal heat pump system)

  • 심병완
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.452-455
    • /
    • 2007
  • The geothermal heat pump system is designed for cooling and heating for three stories building (2,435 $m^2$) includes total 79 heat pumps. Therefore, the monitoring system is installed for each floor and the data is automatically transmitted to the monitoring system. Heat exchange rate and temperature of a geothermal heat pump system have been monitored for a long period. The seasonal operation of geothermal heat pump shows the different shape of heat exchange rate for cooling and heating. Ground water flow can influence on heat exchange rate and thermal storage of the system. In order to define the hydraulic characteristics and groundwater temperature variation, the relationships among air temperatures, groundwater temperatures, water table, and precipitation are analysed.

  • PDF

이동 격자를 이용한 Power Steering용 Vane Pump 유동 해석 (Numerical Simulation of a Vane Pump Characteristics of an Automotive Power Steering System Using Moving Mesh Technique)

  • 이상혁;허남건;진봉용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.459-462
    • /
    • 2006
  • In this study, the characteristic of a vane pump of an automative power steering system is numerically analyzed. The vane pump changes the energy level of operation fluid by converting mechanical input power to hydraulic output. To simulate this mechanism, moving mesh technique is adopted. As a result, the flow rate and pressure are obtained by numerical analysis. The flow rate agrees well with the experimental data. Moreover, the variation and oscillation of the pressure around the rotating vane are confirmed. The difference of pressure appears in the vane tip as a result of the flow characteristics. Furthermore, the back flow into the rotor was observed.

  • PDF