• Title/Summary/Keyword: Pump Characteristics

Search Result 1,440, Processing Time 0.04 seconds

Lubrication Characteristics of High Performance Oil Hydraulic Vane Pump (고성능 유압 베인펌프의 윤활특성)

  • 정재연
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.45-54
    • /
    • 1993
  • The lubrication characteristics of line contacts between the vane and cam ring in an oil hydraulic vane pump with intravanes have been investigated. Variations of the radial acting force of a vane were calculated from previously measured results of dynamic internal pressures in four chambers surrounding a vane, and variations of the film thickness were estimated in both the rotational speed range from 500 to 1500 rpm and in the delivery pressure range from 1 to 14 MPa. The results indicate the variations of the radial acting force and film thickness. It is found that the regimes of lubrication in the vane tip contacts lover rigid-isoviscous to rigidvariable viscosities.

A Study on the Load Characteristics of a Swash Plate Piston Pump Holder (Cradle) with Grooves Considering the Squeeze Effect (스퀴즈 효과를 고려한 사판식 피스톤 펌프 홀더의 그루브 유무에 따른 부하특성에 대한 연구)

  • Ju, Gyeong Jin;Seol, Sang Suk;Kim, Yong Gil;Kim, Soo Tae
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2020
  • The load characteristics of a piston pump holder due to the squeeze effect are influenced by the surface shape and gap thickness of the holder (cradle). Therefore, the pressure distribution and the load capacity of the piston pump holder due to the squeeze effect are studied by using the CFD software and the surface shape and gap thickness of the piston pump holder are considered. In order to verify the accuracy of numerical results, the load capacities of a circular plate holder are numerically studied, and the accuracy of numerical results is verified by comparing with the theoretical results. Also, the pressure distribution and load capacity of the rectangular plate holder of a piston pump are obtained by using the CFD software. The results show that the load capacity of the square plate holder with grooves is slightly higher at a low gap thickness, but the effects of the number and arrangement of grooves on the load capacity of the holder are weak. We conclude that the load capacity and the maximum pressure are slightly affected due to the existence of grooves on the holder surface, and the fluid storing effect of the holder surface grooves during the operation is likely to prevent the dry-sticking phenomenon.

The Effect of Different Inflows on the Unsteady Hydrodynamic Characteristics of a Mixed Flow Pump

  • Yun, Long;Dezhong, Wang;Junlian, Yin;Youlin, Cai;Chao, Feng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • The problem of non-uniform inflow exists in many practical engineering applications, such as the elbow suction pipe of waterjet pump and, the channel head of steam generator which is directly connect with reactor coolant pump. Generally, pumps are identical designs and are selected based on performance under uniform inflow with the straight pipe, but actually non-uniform suction flow is induced by upstream equipment. In this paper, CFD approach was employed to analyze unsteady hydrodynamic characteristics of reactor coolant pumps with different inflows. The Reynolds-averaged Naiver-Stokes equations with the $k-{\varepsilon}$ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The complicated structure of channel head induces the inlet flow non-uniform. The non-uniformity of the inflow induces the difference of vorticity distribution at the outlet of the pump. The variation law of blade to blade velocity at different flow rate and the difference of blade to blade velocity with different inflow are researched. The effects of non-uniform inflow on radial forces are absolutely different from the uniform inflow. For the radial forces at the frequency $f_R$, the corresponding amplitude of channel head are higher than the straight pipe at $1.0{\Phi}_d$ and $1.2{\Phi}_d$ flow rates, and the corresponding amplitude of channel head are lower than the straight pipe at $0.8{\Phi}_d$ flow rates.