• Title/Summary/Keyword: Pulsed Eddy Current (PEC)

Search Result 15, Processing Time 0.028 seconds

Numerical Modeling of the Hall Sensor Signal Used in Pulsed Eddy Current Testing and Comparison of Its Characteristics with a Coil Sensor Signal (홀센서를 사용한 펄스와전류탐상 신호의 수치모델링 및 코일센서 신호와의 특성 비교)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.490-495
    • /
    • 2016
  • Pulsed eddy current (PEC) testing signals have typically been obtained from the electromotive force induced in a sensor coil. However, an increasing number of studies have elected to incorporate the Hall plate as a sensor. Thus, accurate numerical modeling of the Hall sensor signal is necessary. In this study, a PEC probe is designed and a numerical modeling program is written so that Hall sensor signals and coil sensor signals can be calculated simultaneously. First, a step current is used as the input current. The predicted Hall sensor signals show similar characteristics to those of the experimental signals reported by other researchers. The characteristics of the two types of signals are then analyzed and compared as the thickness of test object changes. The results show that the Hall sensor signal provides less information for evaluating the thickness of the test object than the coil sensor signal. The response signals from a pulsed input current are also calculated, and it is confirmed that an equivalent reversed signal pattern appeared after the pulse width at both signals.

Detection of Corrosion and Wall Thinning in Carbon Steel Pipe Covered With Insulation Using Pulsed Eddy Current

  • Park, Duck-Gun;Kishore, M.B.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.57-60
    • /
    • 2016
  • Non Destructive Testing (NDT) methods that are capable of detecting the wall thinning and defects through insulation and cladding sheets are necessary. In this study we developed a Pulsed Eddy Current (PEC) system to detect wall thinning of ferro magnetic steel pipes covered with 95 mm thick fiber glass thermal insulator and shielded with aluminum plate of thickness 0.4 mm. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and a search coil sensor were used as a detecting element. In both the cases, the experimental data indicates a considerable change in the detected pulse corresponding to the change in sample thickness. The thickness of the tube was made to change such as 2.5 mm, 5 mm and 8 mm from the inner surface to simulate wall thinning. Fast Fourier Transform (FFT) was calculated using window approach and the results were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra.

Characteristics of Through Transmission Pulsed Eddy Current Signals from layers (복합층에서 나타나는 투과형 펄스와전류 신호의 특성)

  • Choi, Dong-Myung;Shin, Young-Kil;Kweon, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.53-55
    • /
    • 2008
  • 복합층에서 나타나는 투과형 펄스와전류(Pulsed Eddy Current; PEC) 탐상신호를 수치해석 방법을 사용하여 예측하고 분석하였다. 공기층이 없는 복합층에서 Ti-6Al-4V의 두께가 변하는 경우에는 Lift-off를 변화시켰을 때 나타나는 펄스와전류 신호특성과 LOI(Lift-off Intersection)가 형성되는 것을 관찰할 수 있었고, Aluminum의 두께가 변하는 경우에는 Aluminum만의 두께변화 시 발생하던 신호특성이 났다. 공기층이 있는 복합층에서는 Lift-off를 변화시켰을 때 나타나는 신호특성과 LOI가 형성되었고, 공기층이 증가하면 피크 값이 감소하는 것을 볼 수 있었다.

  • PDF

Design of A Probe for Reflection Type Pulsed Eddy Current Testing (반사형 펄스와전류 탐상을 위한 탐촉자 설계)

  • Shin, Young-Kil;Choi, Dong-Myung;Jung, Hee-Sung;Song, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2036-2037
    • /
    • 2007
  • 반사형 펄스와전류(Pulsed Eddy Current; PEC) 탐상을 위한 여러 가지 탐촉자를 설계하고, 수치해석 방법을 사용하여 신호특성과 두께변화에 대한 만감도를 조사하였다. 구리와 페라이트를 차폐체로 사용한 결과, 구리로 차폐한 여자코일이 페라이트로 차폐한 센서코일보다 안쪽에 있는 것이 두께변화에 더 민감하였고, 페라이트만으로 차폐한 경우에도 여자코일이 안쪽에 있는 것이 더 민감하다는 것을 알 수 있었다. 한편, 두께가 두꺼워지면 펄스신호의 피크치는 감소하며 피크 발생시간이 변화하는 것을 관찰할 수 있었다.

  • PDF

Design and Array Signal Suggestion of Array Type Pulsed Eddy Current Probe for Health Monitoring of Metal Tubes (금속배관 건전성 감시를 위한 배열형 펄스와전류 탐촉자의 설계 및 배열신호 제안)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.