• Title/Summary/Keyword: Pulsed Doppler Ultrasound Velocimetry

Search Result 2, Processing Time 0.018 seconds

Three-Dimensional Flow in an Aortic Bifurcation Model: Comparison of In Vitro Experiments and Numerical Simulation (대동맥 분기관 모델 내 삼차원 유동: In vitro 실험과 수치해석의 비교)

  • Kim, Young-H.;Seo, Sang-H.;Ryu, Sang-S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.15-18
    • /
    • 1995
  • Three-dimensional steady and pulsatile flow experiments and numerical simulations have conducted to investigate the flow characteristics in the aortic bifurcation model. In vitro velocity measurements were made using both laser Doppler anemometry and pulsed Doppler ultrasound velocimetry. In this study, flow phenomena in the aortic bifurcation model are discussed extensively and the numerical results are compared with experimental results.

  • PDF

Ultrasonic Measurement of Tissue Motion for the Diagnosis of Disease

  • Beach Kirk W.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.3-12
    • /
    • 2003
  • Ultrasonic pulsed Doppler velocimetry has become a standard international method of classifying carotid disease. Because the measured angle adjusted velocity increases as the Doppler angle increases, examinations should be performed at a convenient standard Doppler examination angle. An angle of 60 degrees is achievable throughout most examinations. Multiple Doppler viewing angles allow the acquisition of velocity vectors during the cardiac cycle, revealing the complex velocity patterns. Ultrasonic velocimetry (whether Doppler or time domain) is based on changes in the phase of the ultrasound echo. Other examinations can be done based on the echo phase. Slow motions of organs such as the brain can be used to monitor changes in edema. Measurements of tissue strain due to the pulsatile filling of the arterioles. This plethysmographic imaging method can display differences in tissue perfusion because of different tissue types and changes in autonomic activity.

  • PDF