• 제목/요약/키워드: Pulsed Current

검색결과 493건 처리시간 0.026초

펄스파워 전류 측정용 센서 개발 및 특성 평가 (Development of Current Sensor for Pulsed Power and its Characteristics Evaluation)

  • 한상보
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.230-234
    • /
    • 2019
  • 본 논문은 펄스파워 동작시의 수백 ns의 대전류를 측정하기 위한 전류 센서의 개발과 특성평가 결과에 대하여 논하였다. 개발된 전류 센서는 펄스 파워 동작시 전류에 의해 발생되는 자속으로부터 유기기전력을 측정하도록 특별히 설계하였다. 개발 된 전류 센서의 출력 특성은 상업용 센서의 출력 특성과 매우 일치하였으며, 개발 된 센서의 출력 전압 검량선을 이용하여 빠른 펄스 파워의 실제 전류를 쉽게 검출 할 수 있음을 보였다. 따라서, 본 연구에서 개발 된 전류 센서는 실제적인 펄스파워 시스템에 적용할 수 있음을 확인하였다.

펄스 직류 $CF_4$/ Ar 플라즈마 발생 장치의 전기적 특성 평가

  • 김진우;최경훈;박동균;송효섭;조관식;이제원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.236-236
    • /
    • 2011
  • 본 연구 축전 결합형 고주파 플라즈마(CCP) 식각장비에 펄스 직류(Pulse DC) 전원을 인가하여 오실로스코프(oscilloscope)를 분석하여 전기적 특성을 평가하는 것이다. 펄스 직류전원 플라즈마 시스템에서는 다양한 변수를 이해하여야 한다. 본 실험에서 사용한 공정 변수는 Pulsed DC Voltage 300~500 V, Pulsed DC reverse time $0.5{\sim}2.0{\mu}s$, Pulsed DC Frequency 100~250 kHz 이었다. 실험 결과를 정리하면 1) Pulsed DC Voltage 가 증가할수록 Input voltage의 최대값은 336~520 V, 최소값은 -544~-920 V로 변하여 피크 투 피크 (peak to peak)값은 880~1460 V로 증가였다. Input current 또한 최대값은 1.88~2.88 A, 최소값은 -0.84~-1.28 A로 변하여 피크 투피크 값은 2.88~4.24 A로 증가하였다. 이는 척에 인가되는 전류와 파워의 증가를 의미한다. 2) Pulsed DC reverse time이 증가하면 Input voltage와 Input current값이 증가했다 (Input voltage의 피크 투 피크 값은 1200~1440 V, Input current의 피크 투 피크 값은 3.56~4.56 A). 3) Pulsed DC frequency가 증가하면 주기가 짧아져 Input voltage와 Input current값이 증가 한다 (Input voltage의 피크 투 피크 값은 900~1320 V, Input current의 피크 투 피크 값은 2.36~3.64 A). 결론적으로 펄스 직류 플라즈마의 다양한 전기적 변수들은 반응기 내부에 인가되는 Input voltage와 Input current의 값에 큰 영향을 준다는 것을 알 수 있었다.

  • PDF

고전압.대전류 pulsed power의 이용기술 (Application Technologies of Pulsed Power with the High Voltage and Current)

  • 이형호;김영배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 E
    • /
    • pp.1678-1680
    • /
    • 1997
  • The pulsed power with the high voltage and current can be used to the fields of high speed pulses of energy in different forms such as electric current and voltage, electron beam, ion beam, x-rays, gamma rays, heat, magnetics fields, sound and shock waves. This paper is directed mainly at electrical engineers working on production and practical application of high speed pulsed power with high voltage and current.

  • PDF

Pulsed-GMAW의 금속 이행 현상에 관한 동적 해석 (Dynamic Analysis of Metal Transfer in Pulsed-GMAW)

  • 최상균;유중돈;박상규
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.84-91
    • /
    • 1997
  • The metal transfer phenomenon of the pulsed-GMAW is simulated by formulating the electromagnetic force incorporated with the Volume of Fluid algorithm. The free surface profiles, pressure and velocity distributions within the drop are computed numerically. Axial velocity and acceleration generated during peak current period are found to have a significant effect on drop detachment. Therefore, the accelerated inertia force becomes one of important factors affecting metal transfer in the pulsed-GMAW. When the pulse current parameters are selected properly, the molten drop is detached just after current pulse, and the operating range of the pulsing frequency increases with higher peak current and duty cycle. Calculated operating ranges show reasonably good agreements with the available experimental data.

  • PDF

Pulsed GMAW 의 전류 파형이 금속이행에 미치는 영향 (Effect of current waveform on drop transfer in pulsed gas metal arc welding)

  • ;유중돈
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.48-48
    • /
    • 2009
  • Conventionally in pulsed gas metal arc welding (GMAW-P), drop transfer is analyzed with simplest square pulse waveform. While the pulse current is described by four parameters (peak current magnitude and time plus base current magnitude and time), it deviates the real pulse shape. Real pulse can be better idealized by the trapezoidal pulse waveform described by two additional parameters, i.e., current rise and fall rate (dI/dt). Power source response rate is described by these parameters. In this work, the effect of these parameters on drop transfer is predicted by the force displacement model (FDM). While peak current has significant effects on drop detachment, drop transfer is also influenced by the current rise rate. Predictions indicate that the current rise rate can have considerable effects on the size of the detached drop if other pulse parameters are kept constant. FDM is applied to determine peak time for one drop one pulse condition (ODOP) when rests of the pulse parameters are given. The predicted range of ODOP shows good agreement with experimental data.

  • PDF

Autonomie에 적용 가능한 NiMH 배터리 모델 실험 및 구현 (Experiment and Implementation of NiMH Battery Model for Autonomie Environment)

  • 이종경;김재언;차한주
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1875-1880
    • /
    • 2011
  • This paper proposes a battery model applicable to Autonomie environment. Also, a various of experiment is implemented for validation. The proposed battery model modifies Randles equivalent circuit and battery parameters are extracted from pulsed current tests. The parameters are two-dimensional function of current and SOC(State of Charge). The battery model is developed in the Matlab/Simulink and is implemented for NiMH Panasonic HHR650D and compared with pulsed current discharge curves. The simulation results validate the accuracy of the proposed model and the model is also tested by adding it on Autonomie for HEV application. Constant current charge/discharge, pulsed current test that can be used to extract battery parameter are performed and test results are used to build up the proposed battery model for Autonomie.

High-Voltage AlGaN/GaN High-Electron-Mobility Transistors Using Thermal Oxidation for NiOx Passivation

  • Kim, Minki;Seok, Ogyun;Han, Min-Koo;Ha, Min-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1157-1162
    • /
    • 2013
  • We proposed AlGaN/GaN high-electron-mobility transistors (HEMTs) using thermal oxidation for NiOx passivation. Auger electron spectroscopy, secondary ion mass spectroscopy, and pulsed I-V were used to study oxidation features. The oxidation process diffused Ni and O into the AlGaN barrier and formed NiOx on the surface. The breakdown voltage of the proposed device was 1520 V while that of the conventional device was 300 V. The gate leakage current of the proposed device was 3.5 ${\mu}A/mm$ and that of the conventional device was 1116.7 ${\mu}A/mm$. The conventional device exhibited similar current in the gate-and-drain-pulsed I-V and its drain-pulsed counterpart. The gate-and-drain-pulsed current of the proposed device was about 56 % of the drain-pulsed current. This indicated that the oxidation process may form deep states having a low emission current, which then suppresses the leakage current. Our results suggest that the proposed process is suitable for achieving high breakdown voltages in the GaN-based devices.

IMPROVEMENT OF GAS TUNGSTEN ARC WELDABILITY FOR FERRlTIC STAINLESS STEELS

  • Cui Li;Jeong, Ho-shin;Park, Byung-Il;Kim, Sung-Kab
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.107-112
    • /
    • 2002
  • Ferritic stainless steels would be the most important alloys under the chloride environment. They are a cheaper alternative to austenitic stainless steels [1]. The present study is related to gas tungsten arc welding (GTAW) characteristics of Type 444 stainless steels. The heat of welding leads to grain coarsening in the HAZ and in the weld metal of ferritic stainless steels because they solidify directly from the liquid to the ferritc phase without any intermediate phase transformation. It is therefore recommended that these alloys be welded with a low heat input and at high welding speeds. Attempts to improve weldability were made by using of direct current straight polarity (DCSP) and pulsed current GTAW processes in this study. Measuring weld bead, grain size and Erichsen test were performed and the effects of heat input, pulse frequency on the weld metal and HAZ were studied. The main results were obtained as followings: decreasing heat input was effective to control the width of weld both in DCSP welding and in pulsed current welding; pulsed current welding was found to refine the grain size effectively and the finest grain size was found at the frequency of 150Hz in pulsed current welding; it was found that decreasing heat input also refine the HAZs effectively and the frequency had no different effect on HAZ at the same heat input; the ductility could be improved effectively in pulsed current welding.

  • PDF