• Title/Summary/Keyword: Pulse magnetic field

Search Result 151, Processing Time 0.035 seconds

Study on Improvement of Blood Stagnation by Pulsed Magnetic Field

  • Son, Hee Jung;Yoo, Jun Sang;Lee, Myeung Hee;Hwang, Do Gwen;Lee, Hyun Sook
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.114-119
    • /
    • 2015
  • This study explored the effect of pulsed magnetic field (PMF) stimulus on the improvement of blood stagnation by means of photoplethysmography (PPG). Our stimulus system was designed to generate PMF with a maximum intensity variation of 0.20 T at a transition time of $160{\mu}s$, with pulse intervals of 1 Hz. In order to quantitatively estimate vascular condition, indices such as blood vessel tension (BVT), stress power (SP), differential pulse wave index (DPI) and remained blood volume (RBV) were calculated from the second derivative of the PPG signal and power density spectrum (PDS). Our results showed that non-invasive PMF stimulus was effective in improving blood stagnation. Therefore, it may be concluded that appropriate PMF stimulus affects the blood circulatory system.

3-dimensional Coordinate Measurement by Pulse Magnetic Field Method (자기적 방법을 이용한 3차원 좌표 측정)

  • Im, Y.B.;Cho, Y.;Herr, H.B.;Son, D.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.206-211
    • /
    • 2002
  • We have constructed a new kind of magnetic motion capture sensor based on the pulse magnetic field method. 3-orthogonal magnetic pulse fields were generated in turns only one period of sinusoidal waveform using 3-orthogonal magnetic dipole coils, ring counter and analog multiplier. These pulse magnetic fields were measured with 3-orthogonal search coils, of which induced voltages by the x-, y-, and l-dipole sources using S/H amplifier at the time position of maximum induced voltage. Using the developed motion capture sensor, we can measure position of sensor with uncertainty of ${\pm}$0.5% in the measuring range from ${\pm}$0.5 m to ${\pm}$1.5 m.

Pulse forming's switching control adopted a Transcranial Magnetic Stimulation Biomedical engineering, Dongju College University (펄스포밍의 스위칭 제어기술을 적용한 경두개 자기자극장치)

  • Kim, Whi-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.729-736
    • /
    • 2010
  • In this study, a magnetic stimulation (MS) device with controllable pulse forming technology and pulse shape (MS) is described. The MS device uses an IGBT with appropriate snubbers to switch coil currents up to 6 kA, enabling pulse forming technology control from 5 s to over 100 s. The induced electric field pulses use 2% - 34% less energy and generate 57% - 67% less coil heating compared to matched conventional cosine pulses. MS is used to stimulate rhesus monkey motor cortex in vivo with pulse forming technology of 20 to 100 s, demonstrating the expected decrease of threshold pulse amplitude with increasing pulse forming technology. The technological solutions used in the MS prototype can expand functionality, and reduce power consumption and coil heating in MS, enhancing its research and therapeutic applications.

Background Gradient Correction using Excitation Pulse Profile for Fat and $T_2{^*}$ Quantification in 2D Multi-Slice Liver Imaging (불균일 자장 보정 후처리 기법을 이용한 간 영상에서의 지방 및 $T_2{^*}$ 측정)

  • Nam, Yoon-Ho;Kim, Hahn-Sung;Zho, Sang-Young;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.6-15
    • /
    • 2012
  • Purpose : The objective of this study was to develop background gradient correction method using excitation pulse profile compensation for accurate fat and $T_2{^*}$ quantification in the liver. Materials and Methods: In liver imaging using gradient echo, signal decay induced by linear background gradient is weighted by an excitation pulse profile and therefore hinders accurate quantification of $T_2{^*}$and fat. To correct this, a linear background gradient in the slice-selection direction was estimated from a $B_0$ field map and signal decays were corrected using the excitation pulse profile. Improved estimation of fat fraction and $T_2{^*}$ from the corrected data were demonstrated by phantom and in vivo experiments at 3 Tesla magnetic field. Results: After correction, in the phantom experiments, the estimated $T_2{^*}$ and fat fractions were changed close to that of a well-shimmed condition while, for in vivo experiments, the background gradients were estimated to be up to approximately 120 ${\mu}T/m$ with increased homogeneity in $T_2{^*}$ and fat fractions obtained. Conclusion: The background gradient correction method using excitation pulse profile can reduce the effect of macroscopic field inhomogeneity in signal decay and can be applied for simultaneous fat and iron quantification in 2D gradient echo liver imaging.

Simulation Analysis of Spatially Arterial Pulse Wave using Two-dimensional Array Sensors with Magnetoresistive Device (2차원 배열 자기저항소자를 이용한 공간 맥진파형의 전산모사 분석)

  • Kim, M.S.;Kim, S.W.;Kim, G.W.;Lee, S.J.;Lee, S.G.;Lee, H.S.;Park, D.H.;Hwang, D.G.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.307-310
    • /
    • 2005
  • To get the spatial feature of arterial pulse, we designed spatial pulse diagnostic apparatus (SPDA) using a 2-dimensional magnetoresistive sensor array. The magnetic field distribution fur magnet may was simulated using finite element method. We recognized that the field distribution of parallel magnet mays was more sensitive and uniformed than that of perpendicular one. Also the spatial displacements of magnet array were agreed with the output signal of magnetic tunnel junction (MTJ) sensor array.

Magnetic Characterization of the Nd Based Permanent Magnet by Newly-Developed Bipolar Pulse-Type Hysteresis Loop Tracer

  • Rhee, J.R.
    • Journal of Magnetics
    • /
    • v.4 no.3
    • /
    • pp.73-75
    • /
    • 1999
  • By appliying an slternate pulsed magnetic field -generated by using a sequential ignition circuit and a magnet exciting circuit- with peak value of about 10 T to the rod type Nd based magnet Nd2Fe12.7Cr1.3B with length of 5 mm and diameter of 3.6 mm, the basic magnetic properties such as saturation magnetization, residual magnetization, coercivity, maximum energy products, magnetic anisotropy and anisotropic field are investigated with obtaining the major and minor J-H loops of the magnet. The increase in coercivity due to eddy currents in ac measurement of coercivity is calculated considering eddy current loss by analyzing a wave of generating magnetic field. The average coercivity calculated for the magnet is about 12.2 kOe, anisotropy magnetic field and anisotropic constant are measured as 60 kOe 2.43 Mj/$m^3$, respectively.

  • PDF

Cross Correlated Effects of Radiation Damping and the Distant Dipolar Field with a Pulsed Field Gradient in Solution NMR

  • Chung Kee-Choo;Ahn Sang-Doo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.46-58
    • /
    • 2006
  • With a simple pulse sequence ($\pi/2$-{gradient, duration T}-acquisition) in solution NMR, detected signal has slowly grown up to percents of the equilibrium magnetization. The source of this unusual resurrection of dephased magnetization after a crushed gradient is cross-correlated effects of radiation damping and the distant dipolar field, which has been demonstrated by a numerical simulation and theoretical analysis.

  • PDF

Detection of Neuronal Activity by Motion Encoding Gradients: A Snail Ganglia Study

  • Park, Tae-S.;Park, Ji-Ho;Cho, Min-H.;Lee, Soo-Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.24-28
    • /
    • 2007
  • Presuming that firing neurons have motions inside the MRI magnet due to the interaction between the neuronal magnetic field and the main magnetic field, we applied motion encoding gradients to dissected snail ganglia to observe faster responding MRI signal than the BOLD signal. To activate the snail ganglia in synchronization with the MRI pulse sequence, we used electrical stimulation with the frequency of 30 Hz and the pulse width of 2s. To observe the fast responding signal, we used the volume selected MRI sequence. The magnetic resonance signal intensity, measured with 8 ms long motion encoding gradient with a 20mT/m gradient strength, decreased about $3.46{\pm}1.48%$ when the ganglia were activated by the electrical stimulation.

Treatment of Bone Repair by Inductively Magnetic Fields

  • Ahn, Jae-Mok;Lee, Woo-Cheol;Kim, Hee-Chan;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.213-217
    • /
    • 1992
  • An inductively coupled magnetical signal (pulse wave, 0.7 to 60Hz, eighteen volts peak to Peak) that was applied non-invasively on the skin surface overlying the approximate site(measure position). In the group with unipolar pulse signal currents produced smaller than in the group with bipolar pulse signal. The signal was transmitted to the active coil, including a time-varying magnetic field: this in turn induced a the-varying electrical field in the field in the bone. It is very important to determine system parameters due to treatment time(healing) and the simplicity. This paper investigation was designed to compare the relative effects of pulsed unipolar currents with the effects of an identical pulsed bipolar currents. Since Inductive coupling is non-invasive and involves portable equipment, it is easy to apply and requires precise localization, it has distinct advantages and field characteristics along the bone for each different signal.

  • PDF