• Title/Summary/Keyword: Pulse design algorithm

Search Result 111, Processing Time 0.026 seconds

Target Classification Algorithm Using Complex-valued Support Vector Machine (복소수 SVM을 이용한 목표물 식별 알고리즘)

  • Kang, Youn Joung;Lee, Jaeil;Bae, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.182-188
    • /
    • 2013
  • In this paper, we propose a complex-valued support vector machine (SVM) classifier which process the complex valued signal measured by pulse doppler radar (PDR) to identify moving targets from the background. SVM is widely applied in the field of pattern recognition, but features which used to classify are almost real valued data. Proposed complex-valued SVM can classify the moving target using real valued data, imaginary valued data, and cross-information data. To design complex-valued SVM, we consider slack variables of real and complex axis, and use the KKT (Karush-Kuhn-Tucker) conditions for complex data. Also we apply radial basis function (RBF) as a kernel function which use a distance of complex values. To evaluate the performance of the complex-valued SVM, complex valued data from PDR were classified using real-valued SVM and complex-valued SVM. The proposed complex-valued SVM classification was improved compared to real-valued SVM for dog and human, respectively 8%, 10%, have been improved.

A Design of Real-Time QRS Detection in Physio-Module for Echocardiography (심초음파용 실시간 심전도 QRS 검출 모듈에 관한 연구)

  • Jang, Won-Seuk;Kim, Nam-Hyun;Kim, Eong-Sok;Jeon, Dae-Keun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.40-47
    • /
    • 2010
  • In this study, we investigated the performance of real-time QRS complex detection algorithm in physio-module for echocardiography. The performance of QRS detection module in echocardiography was evaluated according to international standard, EC-13 and we compared with commercialized physio-module with QRS complex detection. In this study, we can get performance of QRS complex detection, pacer pulse detection, Tall t-wave rejection and arrhythmia detection within EC-13's criteria and we can get improved QRS trigger delay time and baseline wondering rejection times in compared with commercialized physio-module.

Analysis of HEMP Coupling Signal for a Coaxial Cable with Braided Shields (Braided Shield를 가진 동축 케이블의 HEMP 결합 신호 해석)

  • Lee, Jin-Ho;Cho, Jea-Hoon;Kim, Eung-Jo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.790-796
    • /
    • 2011
  • The system which is exposed in the impact range of High-altitude Electromagnetic Pulse(HEMP) may get serious damage because HEMP has a very large electric field value, a very fast rise-time, and so on. Electromagnetic analysis should be performed for signals coupled to the opening or cables of the system prior to derive the system design specifications in order to protect the system against HEMP adequately. In this paper, we analyzed the HEMP coupled signals for the coaxial cable which is generally used to transmit and receive video or RF signals and compared the coupled signal of the one wire with that of the inner conductor of a coaxial cable to confirm the decreased effect of HEMP by the shield. The coaxial cable is analyzed by the external and internal region of the shield separately. For the external region of the coaxial cable, general scattered equation was applied to calculate currents on the surface of the shield and for internal region of the coaxial cable, chain matrix algorithm is used. To verify this paper the analyzed results were compared the results of the existing paper and the two results have good agreements.

A Study of energy conversion by the penetration control in the skin (에너지변환을 이용한 피부의 투과조절에 관한 연구)

  • Kim, Jeong-Lae;Kim, Hye-Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • We are confirmed to the variation of the transfer condition and the functional penetration by the permitted conversion energy on the skin. The given conversion energy is consist of the flow level of penetration control and go to the processing transfer in the skin that is to create the modeling for algorithm. The energy level of control processing was achieved effectively modeling system that was the composition of auto and local control level in the epidermis-dermis layer. Their penetration pulse control system was consisted of conversion energy with reference of fixing situation and recreation of designed apparatus for the energy control function that was converted to capacity by the size, form and combination. Also, the system was shown accurately distribution of conversion at the depth of skin correction. Therefore, conversion modeling was established effectively to separate the division parts for conversion system. We will be possible to progress the improvement effectiveness of the skin and to consist of the continuous penetration control system for functional energy on the skin.

Design and Implementation of LED Dimming System with Intelligent Sensor Module

  • Cho, Young Seek;Kwon, Jaerock;Kim, Hwan-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • An intelligent light emitting diode (LED) dimming system is designed and implemented for energy-saving lighting systems. An LED light bulb is powered by an LED driver controlled by a microcontroller using pulse width modulation (PWM) signals. By changing the duty cycle of the PWM signals, the LED driver generates a driving current of up to 1,000 mA. The current consumption by the LED light bulb exhibits a very linear characteristic that indicates that the level of LED dimming can be finely tuned. Multiple sensors-lighting intensity and ultrasonic range sensors-are combined with the LED dimming system to realize an automatically controllable LED lighting system. The light intensity sensor is capable of sensing ambient light. The ultrasonic range sensor can detect objects from 0.15 to 5.6 m at a resolution of 0.0254 m. The collected information by the light intensity and ultrasonic range sensors is processed by the microcontroller that in turn automatically controls the brightness of the LED light bulb. The algorithm of the software for the LED dimming system is also described.

A Study on the Propagation of Harmonic Current in the Traction Power Supply System (철도 전력공급시스템에서의 고조파전류 확대현상에 관한 연구)

  • Oh, K.H.;Chang, S.H.;Han, M.S.;Lee, C.M.;Shin, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.908-910
    • /
    • 1998
  • Modern AC electric car has PWM(Pulse Width Modulation) -controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit. As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current. The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

Switching Voltage Modeling and PWM Control in Multilevel Neutral-Point-Clamped Inverter under DC Voltage Imbalance

  • Nguyen, Nho-Van;Nguyen, Tam-Khanh Tu;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.504-517
    • /
    • 2015
  • This paper presents a novel switching voltage model and an offset-based pulse width modulation (PWM) scheme for multilevel inverters with unbalanced DC sources. The switching voltage model under a DC voltage imbalance will be formulated in general form for multilevel neutral-point-clamped topologies. Analysis of the reference switching voltages from active and non-active switching voltage components in abc coordinates can enable voltage implementation for an unbalanced DC-source condition. Offset voltage is introduced as an indispensable variable in the switching voltage model for multilevel voltage-source inverters. The PWM performance is controlled through the design of two offset components in a subsequence. One main offset may refer to the common mode voltage, and the other offset restricts its effect on the quality of PWM control in related DC levels. The PWM quality can be improved as the switching loss is reduced in a discontinuous PWM mode by setting the local offset, which is related to the load currents. The validity of the proposed algorithm is verified by experimental results.

A Development of Proportional Control Solenoid Valve Performance Tester for Automatic Transmission (자동변속기용 비례제어 솔레노이드밸브 성능시험기 개발)

  • Lee, G.H.;Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.21-28
    • /
    • 2006
  • The proportional control solenoid valves as well as the PWM solenoid valves operated by electric signal play an important role in the hydraulic system for automatic transmissions to improve the shift quality. However it is not generally available for the performance data because most of the automotive parts manufacturer don't release the specific test results, especially dynamic performance that is essential to design a shift control algorithm. In this research, a performance test equipment that can be applied to various types of pressure control solenoid valve was developed. It was implemented by 8-bit micro-controller with many useful functions such as adjustable PWM carrier frequency, embedded function generator, current controller, data monitoring and acquisitions, etc. for the test of dynamic performance of solenoid valve as well as the steady-state pressure characteristics. The performance test results for the direct type proportional control solenoid valve show not only the validity of overall functions but also its usefulness as a hydraulic valve tester.

  • PDF

A Study on the Countermeasures to Suppress Harmonics in the Traction Power Supply System (철도 급전시스템에서의 고조파 해석 및 대책 연구)

  • 오광해;이장무;창상훈;한문섭;김길상
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.318-325
    • /
    • 1999
  • Modern AC electric car has PWM(Pulse Width Modulation)-controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit, As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

Current Sensorless Three Phase PWM AC/DC Boost Converter with Unity Power Factor (전류센서리스 단위역률 3상 PWM AC/DC Boost 컨버터)

  • 천창근;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.105-112
    • /
    • 2003
  • Diode rectifier which can't be controlled output voltage and phase control converter as AC/DC converter have low power factor and harmonics of lower order in the line current. In this paper, three phase PWM(Pulse Width Modulation) AC/DC boost converter is studied to solve these problems. The characteristics of a proposed converter are to control the phase of current without current sensor as a very simple control algorithm using circuit parameters only and to apply sinusoidal PWM method with fixed switching frequency due to a difficult design of input filter and switching device. We simulate for the proposed algorithm that high power factor is achieved and DC link voltage has fast dynamic response without ripple in rectifying and regenerating operation. As a result of experiment with circuit parameter(inductor, capacitor) decided in simulation, the proposed converter had high power factor and reduction of low order harmonics as against diode rectifier.