• Title/Summary/Keyword: Pulse Wave parameter

Search Result 52, Processing Time 0.019 seconds

A Study on Estimation of Carotid Intima-Media Thickness(IMT) using Pulse Wave Velocity(PWV) (맥파전달속도를 이용한 내중막 두께 추정에 관한 연구)

  • Song, Sang-Ha;Jang, Seung-Jin;Kim, Wuon-Shik;Lee, Hyun-Sook;Yoon, Young-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.401-411
    • /
    • 2009
  • In this paper, we correct pulse wave velocity(PWV) with heart-rate and derive regression equations to estimate intima-media thickness(IMT). Widely used methods for diagnosis of arteriosclerosis are IMT and PWV. Arterial wall stiffness determines the degree of energy absorbed by the elastic aorta and its recoil in diastole but there is not correlation between sclerosis and IMT in an existing study. In this study, we will correct PWV with heart-rate and get regression equation to estimate IMT using heart-rate correction index(HCI). We executed experiments for this study. Made up question of physical condition and measured electrocardiogram(ECG), photoplethysmogram (PPG) of finger-tip and toe-tip and ultrasound image of carotid artery. Calculated PWV and IMT using ECG, PPG and ultrasound image. We found that every p-value between PWV and IMT is not significant(<0.05). But p-value between IMT and HCI which is a corrected PWV using heart-rate is significant(>0.01). We use HCI and various measured parameter for estimating regression equation and apply backward estimation to select parameters for regression analysis. Result of backward estimation, found that only HCI is possible to derive proper regression equation of IMT. Relationship between PWV and IMT is the second order. Result of regression equation of E-H PWV is $R^2$=0.735, adj $R^2$=0.711. This is the best correlation value. We calculate error of its analysis for verification of earlobe PWV regression equation. Its result is RMSEP=0.0328, MAPE(%) = 4.7622. Like this regression analysis, we know that HCI is useful parameter and relationship between PWV, HCI and IMT. In addition, we are able to suggest possibility which is that we can get different parameter of prediction throughout just one measurement.

Automatic Determination of Pacing Threshold by Surface ECG Morphology (ECG 형태에 의한 자동화된 pacing 문턱 전압 결정에 관한 연구)

  • Kim, J.;Huh, W.
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.269-273
    • /
    • 2001
  • Proper determination of pacing threshold is important for patient safety and pacemaker longevity. In general, cardiac muscle contractions caused by pacing pulses are verified by observing the morphology of surface ECG displayed on a monitor. In this study, a method of automatic pacing threshold determination based on morphological difference between intrinsic and paced ECGs was developed. First, characteristics of intrinsic ECG and paced ECG were analyzed in time and frequency domain and a proper discrimination parameter was extracted. Then, the automatic capture verification method based on the parameter was developed and applied to 23 pacemaker patients. The selected parameter was the area of ventricular depolarization wave during 80ms after pacing stimulus. It was found that the method was reliable and effective in identifying paced ECG and, thereby, determing a proper pacing threshold.

  • PDF

Characteristics of Fatigue in Sasang Constitution by Analyzing Questionnaire and Medical Devices Data (설문지와 의료기기 자료 분석을 통한 사상체질별 피로 특성 연구)

  • Kim, Koo;Ha, Ye-Jin;Park, Soo-Jeong;Choi, Na-Rae;Lee, Young-Seop;Joo, Jong-Cheon
    • Journal of Sasang Constitutional Medicine
    • /
    • v.25 no.4
    • /
    • pp.306-319
    • /
    • 2013
  • Objectives The purpose of this study was to find correlations between gastrointestinal disorders, pain, sleep disorder, fatigue, and to figure out characteristics of fatigue in Sasang Constitution using medical devices data. Methods Sixty three subjects were divided into fatigue group and non-fatigue group, both groups had to undergo blood tests, questionnaire, Sasang constitutional analysis tool (SCAT), pulse wave analyzer examination, heart rate variability examination, nail fold capillary microscopic examination. Results 1) The results of questionnaire about fatigue, gastrointestinal disorder, pain, sleep disorder, quality of life had significant differences between fatigue and non-fatigue groups. 2) Soeumin had more serious gastrointestinal problem and Soyangin had more serious sleep disorder in fatigue groups than non-fatigue groups. 3) According to blood test results, there was no difference between fatigue and non-fatigue groups. 4) Elastic parameter of pulse wave analyzer and nail fold capillary microscopic examination showed significant differences between fatigue and non-fatigue groups in Soyangin. Conclusions We reach the conclusion that fatigue is usually accompanied by gastrointestinal disorder, pain, sleep disorder, deterioration in the quality of life. In Soeumin, treating gastrointestinal disorders can be helpful for treatment of fatigue. In Soyangin, improving sleep disorder may be more effective way to treat fatigue.

Design of FPGA-based Signal Processing of EWRG for Localized Heavy Rainfall Observation (국지성 호우 관측을 위한 FPGA 기반의 전파강수계 신호처리 설계)

  • Choi, Jeong-Ho;Lee, Bae-Kyu;Park, Hyeong-Sam;Park, Jeong-Min;Lim, Sang-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1215-1223
    • /
    • 2020
  • Recently, the number of natural disasters caused by inclement weather conditions such as localized heavy rainfall, Typhoon, etc. is increasing in Korea, which requires relevant prevention and water management measures. Rain gauges installed on the ground have strengths in continuously·directly measures ground precipitation but cannot provide accurate information on spatial precipitation distribution in the areas without the rain gauges. The present research has designed and developed an electromagnetic-based multi-purpose precipitation gauge(EWRG, Electromagnetic Wave Rain Gauge) that can measure rainfall at the real time, by overcoming spatial representativeness. In this paper, we propose an FPGA-based signal processing design method for EWRG. The signal processing of the EWRG was largely designed by calculating the ADC and DDC of the LFM waveform, pulse compression, correlation coefficient and estimating the precipitation parameter. In this study, the LFM waveform and pulse compressed signal were theoretically analyzed.

Precise Estimation of Nonlinear Parameter in Pulse-Like Ultrasonic Signal (펄스형 초음파 신호에서 비선형 파라미터의 정밀 추정)

  • Ha, Job;Jhang, Kyung-Young;Sasaki, Kimio;Tanaka, Hiroaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Ultrasonic nonlinearity has been considered as a solution for the detection of microcracks or interfacial delamination in a layered structure. The distinguished phenomenon in nonlinear ultrasonics is the generation of higher-order harmonic waves during the propagation. Therefore, in order to quantify the nonlinearity, the conventional method measures a parameter defined as the amplitude ratio of a second-order harmonic component and a fundamental frequency component included in the propagated ultrasonic wave signal. However, its application In field inspection is not easy at the present stage because no standard methodology has yet been made to accurately estimate this parameter. Thus, the aim of this paper is to propose an advanced signal processing technique for the precise estimation of a nonlinear ultrasonic parameter, which is based on power spectral and bispectral analysis. The method of estimating power spectrum and bispectrum of the pulse-like ultrasonic wave signal used in the commercial SAM (scanning acoustic microscopy) equipment is especially considered in this study The usefulness of the proposed method Is confirmed by experiments for a Newton ring with a continuous air gap between two glasses and a real semiconductor sample with local delaminations. The results show that the nonlinear parameter obtained tv the proposed method had a good correlation with the delamination.

Analysis of Pulse Wave Parameters According to Aging for Arteriosclerosis Evaluation (동맥경화 평가를 위한 연령별 맥파 주요인자 분석)

  • Lee, Na-Ra;Lee, Seung-Wook;Kim, Soo-Byeong;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.28 no.4
    • /
    • pp.79-89
    • /
    • 2011
  • Objectives : The aim of this study is to propose the W area of pulse (AW) as a new index which can confirm the arteriosclerosis by analyzing parameters of 5-level pressure pulse waveform measurement system for normotensive group according to aging. Methods : We measured radial pulse waveforms of normotensive group (20 to 60 years old) using 3-dimensional pulse imaging analyser (DMP-3000, DAEYOMEDI Co., Korea). And then we analyzed various parameters for sclerosis of the arteries such as Height (h1, h2, h3, h4, h5), Time (t1, t2, t3, t4, t5), AW, AW rate, Total area of pulse (At) and Augmentation Index (AIx). Results : As a result of analyzing parameters according to the aging, h2, h3, AS (systolic area rate to AT), AIx and AW were increased but t2/t, t3/t, t5/t and AD (diastolic area rate to AT) were decreased. Conclusions : We checked blood vessel conditions for normotensive group according to aging and confirmed various parameters. Also, we found that AW was analogous to AIx which has been used for diagnosing arteriosclerosis. Furthermore, we confirmed the usefulness of AW as a new parameter for checking vessel condition and characteristic compared with the AIx.

A Study on the Discharge Characteristics and the Collection Efficiency of the Electrostatic Precipitator for Pulverized Coal Boiler (미분탄 연소 보일러용 전기집진기의 방전특성 및 집진특성에 관한 연구)

  • Lee, Tae-Sik;Son, Jin-Woon;Nam, Chang-Woo;Lee, Kyu-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.10
    • /
    • pp.570-576
    • /
    • 2000
  • The discharge and the collection efficiency characteristics of an electrostatic precipitator have been studied under various operating conditions. The specific resistivity of pulverized coal dust was about 1013∼1014[${\Omega}{\cdot}cm$] and reached the maximum value of 6${\times}$1013[${\Omega}{\cdot}cm$] at 150[$^{\circ}C$]. Back corona has been occurred as dust contents and gas temperature increase. In the case of back corona occurrence, collection effciency decreased rapidly. This problem has been solved by increasing moisture contents. Experimental results showed that collection efficiency of the full wave voltage was higher than that of the pulse wave voltage. The modification parameter k of the collection efficiency equation was about 0.42.

  • PDF

Bayesian in-situ parameter estimation of metallic plates using piezoelectric transducers

  • Asadi, Sina;Shamshirsaz, Mahnaz;Vaghasloo, Younes A.
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.735-751
    • /
    • 2020
  • Identification of structure parameters is crucial in Structural Health Monitoring (SHM) context for activities such as model validation, damage assessment and signal processing of structure response. In this paper, guided waves generated by piezoelectric transducers are used for in-situ and non-destructive structural parameter estimation based on Bayesian approach. As Bayesian approach needs iterative process, which is computationally expensive, this paper proposes a method in which an analytical model is selected and developed in order to decrease computational time and complexity of modeling. An experimental set-up is implemented to estimate three target elastic and geometrical parameters: Young's modulus, Poisson ratio and thickness of aluminum and steel plates. Experimental and simulated data are combined in a Bayesian framework for parameter identification. A significant accuracy is achieved regarding estimation of target parameters with maximum error of 8, 11 and 17 percent respectively. Moreover, the limitation of analytical model concerning boundary reflections is addressed and managed experimentally. Pulse excitation is selected as it can excite the structure in a wide frequency range contrary to conventional tone burst excitation. The results show that the proposed non-destructive method can be used in service for estimation of material and geometrical properties of structure in industrial applications.

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.

A Sham Experiment for the Measurement of Nonlinear Pulse Propagation Characteristics of Blood Vessel Using Bispectral Analysis (바이스펙트럼해석을 이용한 혈관의 비선형 맥동전파특성 계측에 대한 모의실험)

  • 장경영;김경조
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.525-532
    • /
    • 1995
  • In this paper, a new try to measure nonlinear propagation characteristics of the pulse along blood vessel by using bispectral analysis is introduced, and the possibility of its application to the medical diagnosis is shown. In this method, the waveforms of pulse motion of blood vessel at two separated measuring points on the wall were detected from Doppler frequency modulation of transmitted probing ultrasonic waves. Then the auto- and crossbispectrum of detected waveforms are calculated to estimate the quadratic NTF (nonlinear transfer function) between the two measuring positions. In order to show relationships between the NTF and the nonlinear propagation characteristics, computer simulations have been performed. As the propagation distance increases, harmonic frequency components in NTF increases broadly due to the nonlinear effect in the propagation of blood pulse. In order to represent this phenomena quantitatively, we propose a new parameter, dispersion ratio of WTF. Basic experimental system was constructed by using 3.5MHz probing ultrasonic waves and the preliminary experiments were carried out on ague phantom and human body. Experimental results showed the validity of the measurement system enoughly.

  • PDF