• Title/Summary/Keyword: Pulse Transformer

Search Result 259, Processing Time 0.025 seconds

Performance Evaluation of SHF Sensor for Partial Discharge Signal Detection on DC Rectifier (DC 정류기 부분방전 신호검출을 위한 SHF 센서의 성능평가)

  • Jung, Ho-Sung;Park, Young;Na, Hee-Seung;Jang, Soon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1056-1060
    • /
    • 2012
  • Online monitoring system is becoming an essential element of railway traction system for utilized to condition based malignance management and various techniques currently employed in railway traction system. Among the various techniques, it is efficient to detect partial discharge signals by electromagnetic wave detection in order to detect insulation fault of rectifier. Although VHF (Very High Frequency), UHF (Ultra High Frequency) sensors were adopted to detect partial discharge of power facilities, due to characteristics of urban railway, excessive noise occurs from 500 MHz to 1.5 GHz on UHF bandwidth. In this paper a new measurement system able to monitoring the conditions of power facilities on DC substation in metro was studied and set up. The system uses UHF sensors to measure the partial discharge of the rectifier due to electric faulting and dielectric breakdown. Comparison and estimation for performance of SHF sensor which had devised to detect partial discharge signal of urban railway rectifier has conducted. In order to estimate performance of SHF sensor, we have compared the sensor with existing UHF sensor on sensitivity upon frequency bandwidth generated by pulse generator, and also we have verified performance of the SHF sensor by detection results of partial discharge signal from urban railway rectifier.

Common-Mode Voltage Elimination with an Auxiliary Half-Bridge Circuit for Five-Level Active NPC Inverters

  • Le, Quoc Anh;Park, Do-Hyeon;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.923-932
    • /
    • 2017
  • This paper proposes a novel scheme which can compensate the common-mode voltage (CMV) for five-level active neutralpoint clamped (5L-ANPC) inverters, which is based on modifying the space vector pulse width modulation (SVPWM) and adding an auxiliary leg to the inverter. For the modified SVPWM, only the 55 voltage vectors producing low CMV values among the 125 possible voltage vectors are utilized, which varies over the three voltage levels of $-V_{dc}/12$, 0 V, and $V_{dc}/12$. In addition, the compensating voltage, which is injected into the 5L-ANPC inverter system to cancel the remaining CVM through a common-mode transformer (CMT) is generated by the additional NPC leg. By the proposed method, the CMV of the inverter is fully eliminated, while the utilization of the DC-link voltage is not decreased at all. Furthermore, all of the DC-link and flying capacitor voltages of the inverter are well controlled. Simulation and experimental results have verified the validity of the proposed scheme.

A Study on the Countermeasures to Suppress Harmonics in the Traction Power Supply System (철도 급전시스템에서의 고조파 해석 및 대책 연구)

  • 오광해;이장무;창상훈;한문섭;김길상
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.318-325
    • /
    • 1999
  • Modern AC electric car has PWM(Pulse Width Modulation)-controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit, As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

The Characteristics Analysis and Design of High-Frequency Isolated Type ZVZCS PS-PWM DC-DC Converter with Fuel Cell Generation System (연료전지 발전시스템에 적용된 고주파 절연형 ZVZCS PS-PWM DC-DC 컨버터의 설계 및 특성 해석)

  • Suh, Ki-Young;Mun, Sang-Pil;Kim, Dong-Hun;Lee, Hyun-Woo;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.21-28
    • /
    • 2006
  • In this paper, the proposed full-bridge high frequency isolated zoo voltage and zero current switching phase shifted pulse width modulation(ZVZCS PS-PWM)DC-DC converter among fuel cell generation system consist of 1.2[kW] fuel cell of Nexa Power Module, full-bridge DC-DC converter to boost the fuel cell low voltage($28{\sim}43[%]$) to 380[VDC] and a single phase full-bridge inverter is implemented to produce AC output(220[VAC], 60[Hz]). A tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed full-bridge high frequency isolated ZVZCS PS-PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of $93{\sim}97[%]$ is obtained over the wide output voltage regulation ranges and load variations.

A Study on Novel Step Up-Down DC/DC Chopper of Isolated Type with High Efficiency (새로운 고효율 절연형 스텝 업-다운 DC/DC 초퍼에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.82-88
    • /
    • 2009
  • This paper is analyzed for a step up-down DC/DC chopper of high efficiency added electric isolation. The converters of high efficiency are generally made that the power loss of the used semiconductor switching devices is minimized. To achieve high efficiency system, the proposed chopper is constructed by using a partial resonant circuit. The control switches using in the chopper are operated with soft switching by partial resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of the chopper is high. The proposed chopper is also added electric isolation which is used a pulse transformer. When the power conversion system is required electric isolation, the proposed chopper is adopted with the converter system development of high efficiency. The soft switching operation and the system efficiency of the proposed chopper are verified by digital simulation and experimental results.

  • PDF

Wind Power Grid Integration of an IPMSG using a Diode Rectifier and a Simple MPPT Control for Grid-Side Inverters

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.548-554
    • /
    • 2010
  • In this paper, a 1.5 kW Interior Permanent Magnet Synchronous Generator (IPMSG) with a power conditioner for the grid integration of a variable-speed wind turbine is developed. The power-conditioning system consists of a series-type 12-pulse diode rectifier powered by a phase shifting transformer and then cascaded to a PWM voltage source inverter. The PWM inverter is utilized to supply sinusoidal currents to the utility line by controlling the active and reactive current components in the q-d rotating reference frame. While the q-axis active current of the PWM inverter is regulated to follow an optimized active current reference so as to track the maximum power of the wind turbine. The d-axis reactive current can be adjusted to control the reactive power and voltage. In order to track the maximum power of the wind turbine, the optimal active current reference is determined by using a simple MPPT algorithm which requires only three sensors. Moreover, the phase angle of the utility voltage is detected using a simple electronic circuit consisting of both a zero-crossing voltage detecting circuit and a counter circuit employed with a crystal oscillator. At the generator terminals, a passive filter is designed not only to decrease the harmonic voltages and currents observed at the terminals of the IPMSG but also to improve the generator efficiency. The laboratory results indicate that the losses in the IPMSG can be effectively reduced by setting a passive filter at the generator terminals.

A Study on the LCC Type High Frequency DC/DC Converter for Contactless Power Supply System (비접촉 전원장치에 적용한 LCC형 고주파 공진 DC/DC 컨버터에 관한 연구)

  • Kim, Dong-Hee;Hwang, Gye-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.55-64
    • /
    • 2007
  • This paper represents characteristics and design example of series loaded LCC type high frequency resonant DC-DC converter with variable parallel capacitor in the secondary side of inductive power transformer. In this converter, ZVS(zero voltage switching) technique is applied to reduce turn-off switching losses, and the applied converter used the PFM switching pattern to control output voltage. The operating characteristics of the proposed converter is analyzed using nomalized parameter such as switching frequency and load factor with varing the secondary parallel resonant capacitor. The results of analysis show the operating characteristics and design method of the proposed converter using characteristic values. And the proposed converter can be applied for the contactless power supply with linear transfer system such as dean room facilities of semiconductor and Flat Panel Display.

A study of the development of a simple driver for the Pockels cell Q-switch and Its characteristics (단순화된 Pockels cell Q-switch용 구동기 개발 및 특성에 관한 연구)

  • Park, K.R.;Joung, J.H.;Hong, J.H.;Kim, B.G.;Moon, D.S.;Kim, W.Y.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2116-2118
    • /
    • 2000
  • In the technique of Q-switching, very fast electronically controlled optical shutters can be made by using the electro-optic effect in crystals or liquids. The driver for the Pockels cell must be a high-speed, high-voltage switch which also must deliver a sizeable current. Common switching techniques include the use of vacuum tubes, cold cathode tubes, thyratrons, SCRs, and avalanche transistors. Semiconductor devices such as SCRs, avalanche transistors, and MOSFETs have been successfully employed to drive Pockels cell Q-switch. In this study, a simple driver for the Pockels cell Q-switch was developed by using SCRs, pulse transformer and TTL ICs. The Pockels cell Q-switch which was operated by this driver was employed in pulsed Nd:YAG laser system to investigate the operating characteristics of this Q-switch. And we have investigated the output characteristics of this Q-switch as a function of the Q-switch delay time to Xe flashlamp current on.

  • PDF

Partial Discharge Characteristics and Localization of Void Defects in XLPE Cable (XLPE 케이블에서 보이드 결함의 부분방전 특성과 위치추정)

  • Park, Seo-Jun;Hwang, Seong-Cheol;Wang, Guoming;Kil, Gyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.203-209
    • /
    • 2017
  • Research on condition monitoring and diagnosis of power facilities has been conducted to improve the safety and reliability of electric power supply. Although insulation diagnostic techniques for unit equipment such as gas-insulated switchgears and transformers have been developed rapidly, studies on monitoring of cables have only included aspects such as whether defects exist and partial discharge (PD) detection; other characteristics and features have not been discussed. Therefore, this paper dealt with PD characteristics against void sizes and positions, and with defect localization in XLPE cable. Four types of defects with different sizes and positions were simulated and PD pulses were detected using a high frequency current transformer (HFCT) with a frequency range of 150kHz~30MHz. The results showed that the apparent charge increased when the defect was adjacent to the conductor; the pulse count in the negative half of the applied voltage was about 20% higher than that in the positive half. In addition, the defect location was calculated by time-domain reflectometry (TDR) method, it was revealed that the defect could be localized with an error of less than1m in a 50m cable.