• Title/Summary/Keyword: Pulse Repetition Frequency

Search Result 120, Processing Time 0.027 seconds

The Surface Sidelobe Clutter and the False Alarm Probability of Target Detection for the HPRF Waveform of the Microwave Seeker (마이크로파 탐색기의 HPRF 파형에 대한 지표면 부엽클러터와 표적탐지 오류 확률)

  • Kim, Tae-Hyung;Yi, Jae-Woong;Byun, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.476-483
    • /
    • 2009
  • Tracking and detecting targets by the microwave seeker is affected by the clutter reflecting from the earth's surface. In order to detect retreating targets in look-down scenario, which appear in the sidelobe clutter (SLC) region, in the microwave seeker of high pulse repetition frequency (HPRF) mode, it is necessary to understand statistical characteristics of the surface SLC. Statistical analysis of SLC has been conducted for several kinds of the surface using data obtained by the captive flight test of the microwave seeker in the HPRF mode. The probability density function (PDF) fitting is conducted for several kinds and conditions of the surface. PDFs and PDF parameters, which best describe statistical distribution of the SLC power, are estimated. By using the estimated PDFs and PDF parameters, analyses for setting the target-detection thresholds, which give a desired level of target-detection false alarm probability, are made. These analysis materials for statistical characteristics of SLC power and the target-detection threshold can be used in various fields, such as development of a target-detection method, the constant false alarm rate processing.

A Study on the RF performance analysis for Multi-band Ultra Wide Band Systems (멀티밴드 UWB 시스템의 무선성능 분석에 관한 연구)

  • Choi, Seok;Kim, Gil-Gyeom;Kwack, Jun-Ho;Kim, Hak-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.951-957
    • /
    • 2003
  • The analysis of RF performance requirement conditions on communication system is critical indicator to predict the performance of system. UWB(Ultra Wide Band) system which the standard is not established yet is difficult to derive the precise system performance requirement condition. Also, there are differences between conventional UWB system and multi-band system about RF performance requirement condition. In this thesis, the differences are analyzed and performance requirement conditions of multi-band UWB system are described on the basis of the differences. Throughput, maximum transmit power, and sensitivity of multi-band UWB system is varied with respect to the number of Sub-Bands. In addition, because of Multi-path effect, if PRF(Pulse Repetition Frequency) is changed, the Multi-path link margin is happened to compensate for Multi-path Energy Loss which is contributed by increasing of the Link Margin. According to Multi-path Margin, the variation of the resistance with respect to sensitivity and interference signal is observed and analyzed through the simulation.

Performance Analysis of Ultra Wideband Impulse Radio System in Partial Band Interference Environment (부분대역 간섭 환경에서 초광대역 임펄스 무선 전송 시스템의 성능 분석)

  • 이양선;강희조;이권현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.858-864
    • /
    • 2002
  • In this paper, Analyzed Performance of TH/UWB(Time Hopping/Ultra Wideband after Impulse Radio) system in interference environment by existing system that use same frequency band. In case interference fraction ratio is below 0.1, consider and analyzed in case influence through interference in IR system that is shared in 3.1 - 10.6 GHz band hereafter as case that use very small and narrow band than IR system such as 80 MHz bandwidth of ISM band or 802.1la's use bandwidth 20 MHz in 5 GHz band. According to result, we could know that Performance change according to possession band width of interference shows greatly than size of interference electric power. Also, interference fraction ratio is big (more than 0.1) narrowband interference in partial band interference environment, could get Performance improvement of big width increasing pulse repetition number. But, could know that do not influence hardly in system performance when interference fraction ratio is small (below 0.1) narrowband interference. Therefore, may receive the best system performance and transfer efficiency by set the most suitable pulse repetition number according to bandwidth fraction ratio of interference through correct interference fraction ratio estimation and apply proper interference suppression techniques.

The Digital Controlled Implementation of the Resonant DC-DC Converter with High Voltage, High Frequency For Pulsed Nd:YAG Laser (고전압과 고주파수형 공진형 DC-DC 콘버터를 이용한 펄스형 Nd:YAG 레이저의 디지틸제어 구현)

  • Kim, Whi-Young
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.777-783
    • /
    • 2001
  • This paper is mainly concerned with the state of the practical developments of a constants PWM bridge type resonants DC-DC suitable converter for Nd:YAG Laser with a Microprocessor. (PIC16C54 & 8051) The use of IGBT power supply with feedback control of flashLamp currents imparts a advantages to Nd:YAG Laser for materials processing. these include the alility to tailor the pulseshape and modify pulse parameters on a pulse- by pulse basis. And Correct choice of pulseshape can enhance the repeatability of the process. as higher power IGBT became available, act ive pulseforming power supplies will find greater user in deep hole drilling machine By Using certain control tecniques, utililized in designing Pic16c54 from Microchip technology and Intel 8051, also Mornitoring from Microsoft Visual Basic 5, And it allowed us to designed and fabricate ahigh repel it ion rate and high power(HRHP) pulsed Nd:YAG laser system, As a result of that, the current pulsewidth could be contort led 200s to 350s(step 50s) , and the pulse repetition rate could be adjusted 500pps to 1150pps. In addition, in the case of one laser head consisting of a Nd:YAG laser rod and two flashlamps , the maximum laser output of 240w was produced at the condition of 350s and 1150pps, and that of about 480w was generated at the same condition when two laser heads were arranged in cascade.

  • PDF

Characteristics of high-efficiency rust removal by adjusting variable frequency and voltage charging using the Pulsed Power system (펄스파워를 이용한 전압 및 주파수 가변에 의한 고효율 RUST (녹) 제거 특성에 대한 연구)

  • Song, Woo-Jung;Kim, Su-Weon;Jeon, Jin-An;Joung, Jong-Han;Kim, Hwi-Young;Kim, Hee-Je
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.180-183
    • /
    • 2002
  • The pulsed power system was widely making use good of many industrial and environments. The pulse generator generally required for short pulse duration and high peak value was forced to consider its volume and economy. In this paper, this system is designed and fabricated which has a compact size of pulse generator with switched MOSFET. We have studied the removal of rust material using Arc discharging. It have tested their characteristics by adjusting variable voltage charging and pulse repetition rate. As a result, We can eliminate rust materials with this device.

  • PDF

Radar identification by scan period validation (스캔주기 유효성 판별에 의한 레이더 식별)

  • Kim, Gwan-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Radar signal analysis of electronic warfare is a technique for identifying a radar type by signal parameters(direction, radion frequency, pulse repetition interval, pulse width, scan period..) extracted from a received radar pulse. However as the modern radar and new threat environments is advanced, radar identification ambiguity arises in the process of identifying the types of radars. In this paper, we analyze the problems of the existing method and propose a new method. This technique determines the validity of the scan period by the difference in the arrival time of the radar pulse and the minimum number of scan period discrimination. Experiments proved that the scan cycle results are derived regardless of the RMS((Root Mean Square) of the input amplitude.

Illumination Control of LEDs in Visible Light Communication Using Manchester Code Transmission

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.303-309
    • /
    • 2016
  • In this paper, we introduce a new method for controlling the illumination of LEDs in visible light communication (VLC) by changing the duty cycle of Manchester code. When VLC data were transmitted in Manchester code, the average optical power of the LEDs was proportional to the duty cycle. In experiments, we controlled the illumination of a $3{\times}3$ LED array from 10% to 90% of its peak value by changing the duty cycle of the Manchester code. The synchronizing clocks required for encoding and decoding the Manchester code were supplied by pulse generators that were connected to a 220 V power line. All pulse generators made the same pulses with a repetition frequency of 120 Hz, and they were synchronized with the full-wave rectified voltage of the power line. This scheme is a very simple and useful method for constructing indoor wireless sensor networks using LED light.

A Study on the Image Change Using Twinkle Artifact Images and Phantom according to Calcification-Inducing Environment in Breast Ultrasonography (유방 초음파 검사에서 석회화 유발 환경에 따른 반짝 허상과 팸텀을 활용한 영상 변화에 관한 연구)

  • Cheol-Min Jeon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.751-759
    • /
    • 2023
  • Breast ultrasonography is difficult to image in fatty breasts and to find micro-calcification, but the discovery of micro-calcification is very important for breast cancer screening. Among the color Doppler artifact of ultrasound, twinkle artifact mainly occur on strong reflectors such as stones or calcification in images, and evaluation methods using them are clinically being used. In this study, we are conducting experiments on the color Doppler settings of ultrasound equipment, such as repetition frequency, ensemble, persist, wall filtering, smoothing, linear density, and dissociation value, by producing a breast simulation phantom using the largest amount of calcium phosphate among breast implants. The purpose of this study was to improve the contrast of twinkle artifact in breast ultrasound examinations and to maximize their use in clinical practice. As a result, the pulse repetition frequency occurred in the range of 3.6 kHz to 7.2 kHz, and did not occur above 10.5 kHz. For ensembles, twinkle artifact occurred in all sizes of calcification under low conditions, and in threshold settings, the twinkle artifact increased slightly only under 80 to 100 conditions, and did not occur in 1 mm size calcification. Persist, wall filter, smoothing, and line density settings did not have much meaning in the setting variable because conditions did not increase by condition, and pulse repetition frequency, ensemble, and thresholds had the greatest impact on the twinkling artifact image. This study is expected to help examiners select optimal conditions to effectively increase twinkle artifact by adjusting color Doppler settings.

The Characteristics on the Change of Cerebral Cortex using Alternating Current Power Application for Transcranial Magnetic Stimulation

  • Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2014
  • A transcranial magnetic stimulation device is a complicated appliance that employs a switching power device designed for discharging and charging a capacitor to more than 1 kV. For a simple transcranial magnetic stimulation device, this study used commercial power and controlled the firing angle using a Triac power device. AC 220V 60 Hz, the power device was used directly on the tanscranial magnetic stimulation device. The power supply device does not require a current limiting resistance in the rectifying device, energy storage capacitor or discharge circuit. To control the output power of the tanscranial magnetic stimulation device, the pulse repetition rate was regulated at 60 Hz. The change trigger of the Triac gate could be varied from $45^{\circ}$ to $135^{\circ}$. The AVR 182 (Zero Cross Detector) Chip and AVR one chip microprocessor could control the gate signal of the Triac precisely. The stimulation frequency of 50 Hz could be implemented when the initial charging voltage Vi was 1,000 V. The amplitude, pulse duration, frequency stimulation, train duration and power consumption was 0.1-2.2T, $250{\sim}300{\mu}s$, 0.1-60 Hz, 1-100 Sec and < 1 kW, respectively. Based on the results of this study, TMS can be an effective method of treating dysfunction and improving function of brain cells in brain damage caused by ischemia.

Implementation of Digital Signal Processing Board Suitable for a Semi-active Laser Tracking to Detect a Laser Pulse Repetition Frequency and Optimization of a Target Coordinates (반능동형 레이저 유도 추적에 적합한 레이저 펄스 반복 주파수 검출을 위한 디지털 신호처리 보드 구현 및 표적 좌표 최적화)

  • Lee, Young-Ju;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.573-577
    • /
    • 2015
  • In this paper, we propose a signal processing board suitable for a semi-active laser tracking to detect an optical signal generated from the laser target designator by applying an analog trigger signal, the quadrant photodetector and a high speed ADC(analog-digital converter) sampling technique. We improved the stability by applying the averaging method to minimize the measurement error of a gaussian pulse. To evaluate the performances of the proposed methods, we implemented a prototype board and performed experiments. As a result, we implemented a frequency counter with an error 14.9ns in 50ms. PRF error code has a stability of less than 1.5% compared to the NATO standard. Applying the three point averaging method to ADC sampling, the stability of 28% in X-axis and 22% in Y-axis than one point sampling was improved.