• Title/Summary/Keyword: Pulse Propagation

Search Result 217, Processing Time 0.035 seconds

A Debonding Detection Technique for FRP/Rubber Interface by Ultrasonic Phase Reversal (초음파 위상 반전에 의한 FRP/고무 접착 계면의 미접착 결함 검출 연구)

  • Kim, Dong-Ryun;Lim, Soo-Yong;Chung, Sang-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.9-16
    • /
    • 2009
  • The object of this study is to develop new examination technique for detecting debond in adhesive interface of different kinds of materials. Ultrasonic signal was modeled by theoretically analyzing ultrasonic propagation phenomenon of the adhesive interface and debonding interface. The test method using the phase reversal of the debonding interface applied to the FRP/Rubber test block. Aluminum/Rubber test block with the flat bottom hole was manufactured to evaluate quantitatively the minimum detection ability of defects. The pulse echo reflection method and the phase reversal method were mutually compared and it was estimated that the phase reversal method could detect the debond on the basis of the theoretically predicted ultrasonic signal and ultrasonic test data.

Evaluation of a Laser Altimeter using the Pseudo-Random Noise Modulation Technique for Apophis Mission

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Choi, Mansoo;Park, Jong Uk;Choi, Chul-Sung;Bang, Seong-Cheol;Choi, Young-Jun;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.165-173
    • /
    • 2021
  • Apophis is a near-Earth object with a diameter of approximately 340 m, which will come closer to the Earth than a geostationary orbit in 2029, offering a unique opportunity for characterizing the object during the upcoming encounter. Therefore, Korea Astronomy and Space Science Institute has a plan to propose a space mission to explore the Apophis asteroid using scientific instruments such as a laser altimeter. In this study, we evaluate the performance metrics of a laser altimeter using a pseudorandom noise modulation technique for the Apophis mission, in terms of detection probability and ranging accuracy. The closed-form expression of detection probability is provided using the cross correlation between the received pulse trains and pseudo-random binary sequence. And the new ranging accuracy model using Gaussian error propagation is also derived by considering the sampling rate. The operation range is significantly limited by thermal noise rather than background noise, owing to not only the low power laser but also the avalanche photodiode in the analog mode operation. However, it is demonstrated from the numerical simulation that the laser altimeter can achieve the ranging performance required for a proximity operation mode, which employs commercially available components onboard CubeSat-scale satellites for optical communications.

Study on Impulse Wave Radiated from High Speed Railway Tunnel Exit with Baffle Plate (배플 플레이트를 가지는 고속철도 터널 출구로부터 방사하는 미기압파에 관한 연구)

  • Kim, Tae Ho;Kim, Dong Hyeon;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.8-15
    • /
    • 2018
  • Recently, as the high speed railway becomes more common, new environmental problems such as noise around tunnels are appearing. When a high speed train enters a tunnel, a compression wave in the tunnel is generated and propagated toward the tunnel exit at a sonic speed. When it reaches the tunnel exit, a part of compression wave radiates as a pulse typed impulse wave to the outside of tunnel. The impulse wave has an explosive noise. When the impulse wave is propagated around a village, it induces a serious noise or other problems to the resident. In order to solve these engineering problems, it is important to investigate the radiation characteristics of the impulse wave radiated from the tunnel exit. In this study, the effect of the length and angle of the baffle plate at the tunnel exit on the impulse wave radiated from the tunnel exit was investigated by numerical analysis. As a results, the baffle plate greatly affected the propagation of impulse wave.

Development of the HEMP Generation, Propagation Analysis, and Optimal Shelter Design Tool (고 고도 전자기파(HEMP) 발생과 전파해석 및 방호실 최적 설계 Tool 개발)

  • Kim, Dong Il;Min, Gyeong Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2331-2338
    • /
    • 2014
  • The HEMP threat may have acquired new, and urgent, relevance as the proliferation of nuclear weapons and missile technology accelerates of the North Korea, for example, is assessed as already having developed few atomic weapons, and is on the verge of North Korea already has missiles capable of delivering a nuclear warhead against South Korea. ITU K.78, K81 and IEC recommended its counter-measuring for the industrial facilities with navigation and sailing facilities in order to obviate the all of processor equipped system malfunctions from the EMP/HEMP but its simulation must only be done by the computer simulation which had studied on the 1960-1990 years USA/AFWL papers. This result has a significant activities to the South Korea being under the North Korea threat because all of HEMP related products was strongly limited for export. The HEMP cord which was developed newly by the KTI including the HEMP generation & propagation analysis, optimal shelter design tool, essential EM energy attenuation in multi-layered various soils and rocks and HEMP filter design tool. Especially, the least square fitting method was adopted to analysis for the EM energy attenuation in the soils and rocks because it has a various characteristics based on the many times field test reports.

Transport and Fate of Benzene in a Sandy Soil (사질토양에서의 Benzene의 이동성에 관한 연구)

  • 백두성;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 1999
  • Hydrocarbon compounds in vadose zone soils caused by adsorption onto the surfaces of solid particles are generally considered to show retardation effect. In this study, we investigated the retardation effect on the transport of Benzene in a sandy soil by conducting batch and column tests. The batch test was conducted by equilibrating dry soil mass with Benzene solutions of various initial concentrations. and by analyzing the concentrations of Benzene in initial and equilibrated solutions using HPLC. The column test consisted of monitoring the concentrations of effluent versus time known as a breakthrough curve (BTC). We used KCl and Benzene solutions with the concentration of 10 g/L and 0.88 g/L as a tracer, and injected them into the inlet boundary of the soil sample as a square pulse type respectively, and monitored the effluent concentrations at the exit boundary under a steady state condition using an EC-meter and HPLC. From the batch test, we obtained a distribution coefficient assuming that a linear adsorption isotherm exists and calculated the retardation factor based on the bulk density and porosity of the column sample. We also predicted the column BTC curve using the retardation factor obtained from the distribution coefficient and compared with the measured BTC of Benzene. The results of the column test showed that i) the peak concentration of Benzene was much smaller than that of KCl and ⅱ) the travel times of peak concentrations for the two tracers were more or less identical. These results indicate that adsorption of Benzene onto the sand panicles occurred during the pulse propagation but the retardation of Benzene caused by adsorption was not present in the studied soil. Comparison of the predicted with the measured BTC of Benzene resulted in a poor agreement due to the absence of the retardation phenomenon. The only way to describe the absolute decrease of Benzene concentration in the column leaching experiment was to introduce a decay or sink coefficient in the convection-dispersion equation (CDE) model to account for an irreversible sorption of Benzene in the aqueous phase.

  • PDF

Precise Estimation of Nonlinear Parameter in Pulse-Like Ultrasonic Signal (펄스형 초음파 신호에서 비선형 파라미터의 정밀 추정)

  • Ha, Job;Jhang, Kyung-Young;Sasaki, Kimio;Tanaka, Hiroaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Ultrasonic nonlinearity has been considered as a solution for the detection of microcracks or interfacial delamination in a layered structure. The distinguished phenomenon in nonlinear ultrasonics is the generation of higher-order harmonic waves during the propagation. Therefore, in order to quantify the nonlinearity, the conventional method measures a parameter defined as the amplitude ratio of a second-order harmonic component and a fundamental frequency component included in the propagated ultrasonic wave signal. However, its application In field inspection is not easy at the present stage because no standard methodology has yet been made to accurately estimate this parameter. Thus, the aim of this paper is to propose an advanced signal processing technique for the precise estimation of a nonlinear ultrasonic parameter, which is based on power spectral and bispectral analysis. The method of estimating power spectrum and bispectrum of the pulse-like ultrasonic wave signal used in the commercial SAM (scanning acoustic microscopy) equipment is especially considered in this study The usefulness of the proposed method Is confirmed by experiments for a Newton ring with a continuous air gap between two glasses and a real semiconductor sample with local delaminations. The results show that the nonlinear parameter obtained tv the proposed method had a good correlation with the delamination.

Multimodal Biological Signal Analysis System Based on USN Sensing System (USN 센싱 시스템에 기초한 다중 생체신호 분석 시스템)

  • Noh, Jin-Soo;Song, Byoung-Go;Bae, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.1008-1013
    • /
    • 2009
  • In this paper, we proposed the biological signal (body heat, pulse, breathe rate, and blood pressure) analysis system using wireless sensor. In order to analyze, we designed a back-propagation neural network system using expert group system. The proposed system is consist of hardware patt such as UStar-2400 ISP and Wireless sensor and software part such as Knowledge Base module, Inference Engine module and User Interface module which is inserted in Host PC. To improve the accuracy of the system, we implement a FEC (Forward Error Correction) block. For conducting simulation, we chose 100 data sets from Knowledge Base module to train the neural network. As a result, we obtained about 95% accuracy using 128 data sets from Knowledge Base module and acquired about 85% accuracy which experiments 13 students using wireless sensor.

Modeling of THz Frequency Spectrum via Optical Rectification in THz Time Domain Spectroscopy (테라헤르츠 시간 영역 분광의 광정류시 발생하는 테라헤르츠 스펙트럼 모델링)

  • Lee, Kang-Hee;Yi, Min-Woo;Ahn, Jea-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • In recent years, gradually increasing interest has been directed to the use of terahertz technology in nondestructive testing and non-invasive measurements, and terahertz time domain spectroscopy (THz-TDS) has become a key technology in such applications. This paper deals with the terahertz pulse generation from cadmium telluride via optical rectification process of femto-second infrared laser pulses. The measured terahertz spectrum is compared with the result of model calculation based on space-time domain nonlinear Maxwell equations for coherent frequency mixing process. The propagation process of terahertz and infra-red pulses in the material as well as the surface interference and free space diffraction effects are also considered. The experimental results are in good agreements with the calculated spectrum.

The Power of Simultaneous Multi-frequency Observations for mm-VLBI: Beyond Frequency Phase Transfer

  • Zhao, Guang-Yao;Algaba, Juan Carlos;Lee, Sang Sung;Jung, Taehyun;Dodson, Richard;Rioja, Maria;Byun, Do-Young;Hodgson, Jeffrey;Kang, Sincheol;Kim, Dae-Won;Kim, Jae-Young;Kim, Jeong-Sook;Kim, Soon-Wook;Kino, Motoki;Miyazaki, Atsushi;Park, Jong-Ho;Trippe, Sascha;Wajima, Kiyoaki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2017
  • Atmospheric propagation effects at millimeter wavelengths can significantly alter the phases of radio signals and reduce the coherence time, putting tight constraints on high frequency Very Long Baseline Interferometry (VLBI) observations. In previous works it has been shown that non-dispersive (e.g. tropospheric) effects can be calibrated with the frequency phase transfer (FPT) technique. The coherence time can thus be significantly extended. Ionospheric effects, which can still be significant, remain however uncalibrated after FPT, as well as the instrumental effects. In this work, we implement a further phase transfer between two FPT residuals (i.e. so-called FPT2) to calibrate the ionospheric effects based on their frequency dependence. We show that after FPT2, the coherence time at 3 mm can be further extended beyond 8 hours, and the residual phase errors can be sufficiently canceled by applying the calibration of another source, which can have a large angular separation from the target (> $20{\circ}$). Calibrations for all-sky distributed sources with a few calibrators are also possible after FPT2. One of the strengths and uniqueness of this calibration strategy is the suitability for high frequency all-sky survey observations including very weak sources. We discuss the introduction of a pulse calibration system in the future to calibrate the remaining instrumental effects and allowing the possibility of imaging the source structure at high frequencies with FPT2, where all phases are fully calibrated without involving any sources other than the target itself.

  • PDF

A Study on the Impulse Waves Discharged from the Exit of the Convergent and Divergent Pipes (축소관과 확대관 출구로부터 방출되는 펄스파에 관한 연구)

  • Lee, D.H.;Lee, M.H.;Kweon, Y.H.;Kim, H.D.;Park, J.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.346-354
    • /
    • 2002
  • The present study is to investigate the propagation characteristics of the impulse waves discharged from the exit of the convergent and divergent pipes. An experiment is carried out using a shock tube with an open end and is compared to the computation of the axisymmetric, compressible, unsteady Euler equations, which are solved by the second-order total variation diminishing (TVD) scheme. For the computational work, several initial compression waves are assumed inside the pipe so that those are the same to the experimental ones of the shock tube. The results show that the peak pressures of the impulse waves discharged from the exit of convergent and divergent pipes decrease with an increase in the wavelength of the initial compression wave. All of the impulse waves have a strong directivity toward the pipe axis, regardless of the exit type of the pipe employed. The impulse waves discharged from the divergent pipe are stronger than those from the straight pipe, while the impulse waves of the convergent pipe are weaker than those from the straight pipe. It is found that the convergent pipe can play a role of a passive control to reduce the peak pressure of the impulse wave. The present computations represent the experimented impulse waves with a good accuracy.