• 제목/요약/키워드: Pulse Electric Current Sintering (PECS)

검색결과 7건 처리시간 0.017초

나노구조 Fe-Co 연자성 합금의 제조를 위한 PECS 공정 연구 (PECS Process for Fabrication of Nanostructured Fe-Co Softmagnetic Alloy)

  • 홍성수;김대건;김영도
    • 한국재료학회지
    • /
    • 제11권5호
    • /
    • pp.378-384
    • /
    • 2001
  • 본 연구에서는 기계적 합금화 공정을 통하여 평균 10nm의 크기를 가지는 결정립으로 이루어지는 나노구조 Fe-Co 합금분말을 제조하였으며 제조된 합금분말을 PECS 공정으로 소결하여 벌크의 나노구조 Fe-Co 연자성 합금을 제조하고자 하였다. PECS 공정은 소결온도를 700, 800, 900과 100$0^{\circ}C$로 변화시키고 유지시간을 0에서 16분가지 변화시켜주며 수행하였다. PECS 공정의 나노구조 소결체 제조에 관한 효율성을 평가하였으며 소결온도와 유지시간의 변화에 따른 소결밀도와 미세구조의 변화를 관찰하여 최적의 소결조건을 찾고자하였다. 또한 각 소결조건에서 제조된 소결체들의 보자력과 포화자화값을 측정하여 자성특성을 평가하였다.

  • PDF

Fabrication and Characterization of Alumina/Silver Nanocomposites

  • Cheon, Seung-Ho;Han, In-Sub;Woo, Sang-Kuk
    • 한국세라믹학회지
    • /
    • 제44권7호
    • /
    • pp.343-348
    • /
    • 2007
  • Alumina/silver nanocomposites were fabricated using a soaking method through a sol-gel route to construct an intra-type nanostructure. The pulse electric-current sintering (PECS) technique was used to sinter the nanocomposites. Several specimens were annealed after sintering. The microstructure, mechanical properties, critical frontal process zone (FPZ) size, and thermo-mechanical properties of the nanocomposites were estimated. The relative densities of the specimens sintered at 1350 and $1450^{\circ}C$ were 95% and 99%, respectively. The maximum value of the three-point bending strength was found to be 780 MPa for the $2{\times}2{\times}10 mm$ specimen sintered at $1350^{\circ}C$. The fracture toughness of the specimen sintered at $1350^{\circ}C$ was measured to be $3.60 MPa{\cdot}m^{1/2}$ using the single-edge V-notched beam (SEVNB) technique. The fracture mode of the nanocomposites was transgranular, in contrast to the intergranular mode of monolithic alumina. The fracture morphology suggested that dislocations were generated around the silver nanoparticles dispersed within the alumina matrix. The specimens sintered at $1350^{\circ}C$ were annealed at $800^{\circ}C$ for 5 min, following which the maximum fracture strength became 810 MPa and the fracture toughness improved to $4.21 MPam^{1/2}$. The critical FPZ size was the largest for the specimen annealed at $800^{\circ}C$ for 5 min. Thermal conductivity of the alumina/silver nanocomposites sintered at $1350^{\circ}C$ was 38 W/mK at room temperature, which was higher than the value obtained with the law of mixture.

$Al_2O_3/Cu$ 나노복합분말의 제조 및 소결 특성 (The Fabrication and Sinterability of $Al_2O_3/Cu$ Nanocomposite Powder)

  • 홍대희;오승탁;김지순;김영도;문인형
    • 한국분말재료학회지
    • /
    • 제6권4호
    • /
    • pp.301-306
    • /
    • 1999
  • Mechanical properties of oxide based materials could be improved by nanocomposite processing. To investigate optimum route for fabrication of nanocomposite enabling mass production, high energy ball milling and Pulse Electric Current Sintering (PECS) were adopted. By high energy ball milling, the $Al_2O_3$-based composite powder with dispersed Cu grains below 20 nm in diameter was successfully synthesized. The PECS method as a new process for powder densification has merits of improved sinterability and short sintering time at lower temperature than conventional sintering process. The relative densities of the $Al_2O_3$-5vol%Cu composites sintered at $1250^{\circ}C$ and $1300^{\circ}C$ with holding temperature of $900^{\circ}C$ were 95.4% and 95.7% respectively. Microstructures revealed that the composite consisted of the homogeneous and very fine grains of $Al_2O_3$ and Cu with diameters less than 40 nm and 20 nm respectively The composite exhibited enhanced toughness compared with monolithic $Al_2O_3$. The influence of the Cu content upon fracture toughness was discussed in terms of microstructural characteristics.

  • PDF

PECS에 의해 제조된 $Al_2O_3$/5vol.%Cu 나노복합재료의 파괴인성 (Fracture Toughness of $Al_2O_3$/5vol.%Cu Nanocomposites Fabricated by PECS)

  • 민경호;홍대희;김대건;김영도;문인형
    • 한국분말재료학회지
    • /
    • 제7권3호
    • /
    • pp.149-153
    • /
    • 2000
  • In this study, the fabrication of $Al_2O_3$/5vol.%Cu nanocomposite and its mechanical property were discussed. The nanocomposite powders were produced by high energy ball milling of $Al_2O_3$ and Cu elemental powders. The ball-milled powders were sintered with Pulse Electric Current Sintering (PECS) facility. The relative densities of specimens sintered at $1200^{\circ}C$ and $1250^{\circ}C$ after soaking process at $900^{\circ}C$ were 96% and over 97%, respectively. The sintered microstructures were composed of $Al_2O_3$ matrix and the nano-sized Cu particles distributed on grain boundaries of $Al_2O_3$ matrix. The nanocomposite exhibited the enhanced fracture toughness compared with general monolithic $Al_2O_3$. The toughness increase was explained by the crack deflection and bridging by dispersed Cu particles.

  • PDF

CU Oxide 분산 및 환원에 의한 Al2O3/Cu 나노복합재료의 제조공정 (Fabrication Process of Al2O3/Cu Nanocomposite by Dispersion and Reduction of Cu Oxide)

  • 고세진;민경호;강계명;김영도;문인형
    • 한국재료학회지
    • /
    • 제12권8호
    • /
    • pp.656-660
    • /
    • 2002
  • It was investigated that $Al_2$$O_3$/Cu nanocomposite powder could be optimally prepared by dispersion and reduction of Cu oxide, and suitably consolidated by employing pulse electric current sintering (PECS) process. $\alpha$-$Al_2$$O_3$ and CuO powders were used as elemental powders. In order to obtain $Al_2$O$_3$ embedded by finely and homogeneously dispersed CuO particles, the elemental powders were high energy ball milled at the rotating speed of 900 rpm, with the milling time varying up to 10 h. The milled powders were heat treated at $350^{\circ}C$ in H$_2$ atmosphere for 30 min to reduce CuO into Cu. The reduced powders were subsequently sintered by employing PECS process. The composites sintered at $1250^{\circ}C$ for 5 min showed the relative density of above 98%. The fracture toughness of the $Al_2$$O_3$/Cu nanocomposite was as high as 4.9MPa.$m^{1}$2//, being 1.3 times the value of pure $Al_2$$O_3$ sintered under the same condition.

Fabrication of Nano-sized Metal Dispersed Magnesia Based Composites and Related Mechanical and Magnetic Properties

  • Choa, Yong-Ho;Tadachika Nakayama;Tohru Sekino;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • 제5권4호
    • /
    • pp.395-399
    • /
    • 1999
  • MgO/metal nanocomposite powder mixtures were prepared by solution chemical processes to obtain suitable structure for ceramic/metal nanocomposites. Nickel or cobalt nitrate, as a source of metal dispersion, was dissolved into alcohol and mixed with magnesia powder. After calcined in air, these powders were reduced by hydrogen. Densified nanocomposites were successively obtained by Pulse Electric Current Sintering (PECS) process. The dispersed metal partical size depended on temperature and time in calcination and reduction processes. The phase analyses in the synthesized powders as a functioni of temperature were tracked using a dynamic high temperature X-ray diffractioni (HTXRD) system. Phase and crystallite size analyses were done using X-ray diffractioni and TEM. The MgO/metal nanocomposites were successfully fabricated, and ferromagnetic responses with enhanced coercive force were also investigated for these composites.

  • PDF

기계적 합금화된 Ni-36at.%Al 합금의 상변태에 미치는 결정립 크기 및 냉각속도의 영향 (The Effect of Grain Size and Cooling Rate on Phase Transformation for Mechanically Alloyed Ni-36at.%Al Alloy)

  • 김성욱;김대건;김지순;안인섭;김영도
    • 한국재료학회지
    • /
    • 제10권9호
    • /
    • pp.642-647
    • /
    • 2000
  • Ni-36at.%Al을 함유하는 나도 결정립의 NiAl 합금이 기계적 합금화법에 의해 제조되었다. 제조된 분말은 방전 플라즈마 소결법에 의해 만들어졌다. 상변테에 영향을 주는 인자는 냉각속도와 열처리 시간의 조건으로 논의되었다. 소결체의 상변태 거동은 시차 열분석(DSC)과 X-선 회절(XRD) 분석법에 의해 조사되었다. 미세구조는 주사전자현미경(SEM)으로 관찰되었다. 마르텐사이트 격사상수와 체적 분율은 X-선 회절분석법 중 직접비교법에 의해 계산되었다.

  • PDF