• Title/Summary/Keyword: Pulsating Pressure

Search Result 110, Processing Time 0.029 seconds

Operational Characteristics of Pulsating Heat Pipes for the Application to the Heat Dissipation of LED Lighting (LED 조명 방열 환경에서 진동형 히트파이프의 작동 특성)

  • Bang, Kwang-Hyun;Kim, Hyoung-Tak;Park, Hae-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.830-836
    • /
    • 2012
  • An efficient cooling system is essential for the electronic packaging such as a high-luminance LED lighting. A special heat transport technology, Pulsating Heat Pipe (PHP), can be applied to the cooling of LED lighting. In this paper, the operational characteristics of the PHP in the imposed thermal boundary conditions of LED lighting were experimentally investigated. The experimental PHP was made of copper tubes of internal diameter of 2.1 mm. The working fluids of ethanol, FC-72, water, acetone and R-123 were chosen for comparison. The results showed that an optimum range of charging ratio exists for high cooling performance; 50% for most of the fluids. Among the five working fluids, water showed the highest heat transfer rate of 260 W. Two distinguished characteristics of pulsating direction were identified. It is also identified that high vapor pressure gradient is one of key parameters for better heat transfer performance.

An experimental study on the performance improvement of dead-end type PEMFC with pulsating effect (맥동 효과를 이용한 dead-end type 연료전지의 성능향상에 대한 실험적 연구)

  • Choi, Jong-Won;Seo, Jeong-Hoon;Hwang, Yong-Sheen;Lee, Dae-Heung;Cha, Suk-Won;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.567-571
    • /
    • 2008
  • PEM Fuel Cell operation mode can be classified into dead-end mode or open mode by whether the outlet port is blocked or not. Generally, dead-end type fuel cell has some merits on the pressure drop and system efficiency because it can generate more power than the open type fuel cell due to high operating pressure condition. However, the periodic purging process should be done for removing water which is formed as product of a reaction in the gas diffusion layer. In this study, cathode side dead-end type operation has been conducted. Moreover, pulsating flow generator at the outlet of cathode side has been suggested for increasing the period to purge the formed water because the pulsating flow can make formed water scattered uniformly over the whole channel. As a result, the purging period with pulsation increased by 1.5-2 times longer than that without pulsating.

  • PDF

Analysis on the Interactions of Harmonics in Exhaust Pipes of Automotive Engines

  • Lee, Min-Ho;Lee, Joon-Seo;Cha, Kyung-Ok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1867-1875
    • /
    • 2003
  • In exhaust pipes of automotive engines, the pulsating pressure waves are composed of fundamental frequency and high order harmonics. The nonlinearities in the exhaust pipe is caused by their interactions. The error between prediction and measurement is induced by the nonlinearities. We can not explain this phenomenon using linear acoustics theory. So power spectrum, which is used in linear theory, is not useful. This paper is concerned with the development of useful engineering techniques to detect and analyze nonlinearity in exhaust pipe of automotive engines. The study of higher order statistics has been dominated by work on the bispectrum. The bispectrum can be viewed as a decomposition of the third moment (skewness) of a signal over frequency and as such is blind to symmetric nonlinearities. The phenomenon of quadratic phase coupling (QPC) can be analyzed by the bicoherence function. Finally the application of these techniques to data from actual exhaust pipe systems is performed.

An Analysis of Heat Transfer in the Flue Tube of a Pulse Combustor (맥동연소기 도관에서의 열전달 해석)

  • Kim, C.K.;Cha, S.M.;Pak, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.1
    • /
    • pp.20-32
    • /
    • 1992
  • A numerical solution for heat transfer in the flue tube of a pulse combustion water heater was presented. The $k-{\varepsilon}$ turbulent model was adopted to describe turbulent characteristics and radiative heat transfer was calculated by P-N approximation. Three pulsating conditions equivalent to existing experimental studies were used for analysis. Pulsating pressure was specified at the inlet and outlet of flue tube and numerical procedure using control volume method and pressure boundary condition was presented. It was found that the present mathematical model and numerical method could predict effectively the flow field and heat transfer for the flue tube in pulse combustor.

  • PDF

A Study on the Combustion Characteristics in an Aero-Valved Pulsating Combustion System (空氣밸브型 脈動燃燒시스템의 燃燒特性에 관한 硏究)

  • 임광렬;오상헌;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.328-337
    • /
    • 1988
  • Experimental study was carried out to investigate the combustion characteristics of the hero-valved pulsating combustor with maximum operating capacity of 56kW. The pressure, the ion current, and the temperature fluctuations were simultaneously measured and statistically analyzed to identify the combustion process, the reignition and the mixing process of the reactants. It was found that the pulse combustion process was intermittent and the reignition of the reactants was caused by a direct contact and rapid mixing with the previous hot residuals. The analysis of the measured data indicated that the combustion process consisted of there stages in the combustion chamber; the preheating of the reactants in the vicinity of the air inlet pipe, the explosive combustion in the central region and the afterburning in the vicinity of the tailpipe. Wile the inflow of the fresh air occurred during the negative period of the pressure in the mechanical valved system, it occurred during the rising period of the pressure in the aero-valved system.

Computational and Experimental Analysis of Variable Exhaust Pipe Diameters in Four-Stroke Gasoline Engine (4 행정 가솔린 엔진 내의 다양한 배기 파이프 직경 변화에 따른 실험과 수치해석)

  • Choi, Seuk-Cheun;Lee, Hae-Jeong;Shin, You-Sik;Chung, Han-Shik;Jeong, Hyo-Min;Lee, Kwang-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.684-689
    • /
    • 2004
  • In this study, a experimental method has been introduced for the various exhaust pipe geometry of 4-stroke single cylinder engine. The main experimental parameters are the variation of exhaust pipe diameters and lengths, to measuring the pulsating flow when the intake and exhaust valves are working. As the results of experimental test, the various exhaust geometry were influenced strongly on the exhaust pressure. As the exhaust pipe diameter was decreased, the amplitude and the number of compression wave in exhaust pressure was increased. According to decreasing pipe diameter, the number of compression wave in exhaust pressure was decreased. When the pipe diameter was increase, the second amplitude was increased.

  • PDF

Mass Flow Rate Measurement of Pulsating Flow in a Twin-Scroll Turbocharger (트윈스크롤 터보과급기에서 맥동유동의 질량유량 측정)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.723-729
    • /
    • 2019
  • Turbochargers are an effective device to reduce the fuel consumption. In this study, the mass flow rate of pulsating flow in the twin-scroll turbocharger for the gasoline engine of passenger vehicles was measured. Pulsating flow was achieved using a pulse generator and the mass flow rate of the unsteady pulsating flow was analyzed by comparing it with those of the steady flow. The pulse generator consisted of a rotating upper plate and a fixed lower plate. To measure the mass flow rate of unsteady flow, the orifice flow meter equipped with the difference pressure transducer was used. To analyze the low speed performance of the turbocharger, the measurement was carried out in the speed of turbocharger from 60,000rpm to 100,000rpm. The mass flow parameters of the unsteady pulsating flow showed a large difference compared to those of the steady flow. Those of the unsteady flow showed the hysteresis loop surrounding the mass flow parameters of the steady flow and the maximum variation of the mass flow parameters were 5.0 times those of the steady flow. This phenomenon is the result of the filling and emptying the turbine volute space due to pulsating flow.

Turbine Efficiency Measurement of Pulsating Flow in a Twin Scroll Turbocharger (맥동 유동이 있는 트윈 스크롤 터보과급기의 터빈 효율 측정)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.386-391
    • /
    • 2021
  • Turbocharging is becoming a key technology for both diesel and gasoline engines. Regarding gasoline engines, turbocharging can help reduce carbon dioxide (CO2) emissions when used in conjunction with other technologies. This paper presents measurements of the turbine efficiency of pulsating flow in a twin-scroll turbocharger for gasoline engines. A cold gas test bench with a pulse generator was manufactured. The turbine efficiencies were calculated using the measured data of the instantaneous pressure and temperature of the inlet and exit of the turbine. The measurements were carried out at turbine speeds from 60,000 to 100,000 rpm under a pulsating flow of 25.0 Hz and 33.0 Hz. The turbine efficiencies ranged from 0.517 to 0.544. At the pulse frequency, 33.3 Hz, the variations in efficiency were 7.7% and 2.6% at turbine speeds of 60,000 rpm and 100,000 rpm, respectively. The turbine efficiency of the pulsating flow compared to those of steady flow was 7.0% and 3.0% lower at a turbine speed of 60,000 rpm and 100,000 rpm, respectively. The pulsating flow deteriorated the turbine efficiency, but the effects of pulsating flow decreased with increasing turbine speed.

Numerical Analysis of Pulsating Heat Pipe Based on Separated Flow Model

  • Kim Jong-Soo;Im Yong-Bin;Bui Ngoc Hung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1790-1800
    • /
    • 2005
  • The examination on the operating mechanism of a pulsating heat pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased.

Changes in The Pressure-Flow Control Characteristics of Shunt Valves Under Brain Pressure Pulsation (뇌압 펄스하에서 션트밸브의 압력-유량제어 특성곡선의 변화)

  • Hong Yisong;Lee Chong-Sun;Jang Jongyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.699-702
    • /
    • 2002
  • Shunt valves implanted in the subcutaneous tissue of brain to treat patient with hydrocephalus were numerically simulated to investigate influence of pressure pulsation on their flow control characteristics. Shunt valves are subjected to pressure variation since ventricles enclosing the brain are under pressure pulsation rather than uniform pressure due to blood pressure variation. We modeled flow orifice through shunt valve and imposed pulsating pressure and valve diaphragm movement to compute flow through the valve. The results of our study indicated that flow rate increased by $40{\%}$ by introducing pressure pulsation and diaphragm movement on the shunt valve. Our results demonstrate the pressure-flow control characteristics of shunt valves unplanted above human brain may be quite different from the characteristics obtained by syringe pump test with uniform pressure and no diaphragm movement.

  • PDF