• Title/Summary/Keyword: Pulsating Follower Forces

Search Result 4, Processing Time 0.016 seconds

Dynamic Stability of Cylindrical Shells Subjected to Follower Forces (종동력을 받는 원통셸의 동적 안정성에 관한 연구)

  • 김현순;김지환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.336-345
    • /
    • 1998
  • The dynamic instability of cylindrical shell with clamped-free boundary condition subjected to constant follower force or $P_0 + P_1cos {\Omega}_t$ type pulsating follower force is analyzed. The motion of shell is modeled using the shell theory considering rotary inertia and shear deformation, and analyzed with finite element method. In case of constant follower force, the changes of eigenvalues dependent on the magnitude of applied load are investigated and the critical loads are obtained. In case pulsating follower force, instability regions of exicitation frequency are obtained by modal transform with right and left modal matrix and by multiple scales method. The effects of thickness ratio and aspect ratio on the instability of shell are studied.

  • PDF

On the Dynamic Stability of Rectangular Plates with Four Free Edges Subjected to Pulsating Follower Forces (맥동종동력이 작용하는 사각 자유경계판의 동적 안정성에 관한 연구)

  • 추연선;김지환
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.127-134
    • /
    • 1997
  • The dynamic stability of classical plates and Mindlin plates subjected to pulsating follower forces is investigated in this paper. Using the finite element method, the induced equation is reduced to that of one with finite degrees of freedom. Then, the multiple scales method is applied to analyze the dynamic instability region. The effects of aspect ratio, Poisson ratio, rotary inertia and shear deformation on the dynamic stability of plates are studied in this paper.

  • PDF

Aeroelastic Behaviour of Aerospace Structural Elements with Follower Force: A Review

  • Datta, P.K.;Biswas, S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.134-148
    • /
    • 2011
  • In general, forces acting on aerospace structures can be divided into two categories-a) conservative forces and b) nonconservative forces. Aeroelastic effects occur due to highly flexible nature of the structure, coupled with the unsteady aerodynamic forces, causing unbounded static deflection (divergence) and dynamic oscillations (flutter). Flexible wing panels subjected to jet thrust and missile type of structures under end rocket thrust are nonconservative systems. Here the structural elements are subjected to follower kind of forces; as the end thrust follow the deformed shape of the flexible structure. When a structure is under a constant follower force whose direction changes according to the deformation of the structure, it may undergo static instability (divergence) where transverse natural frequencies merge into zero and dynamic instability (flutter), where two natural frequencies coincide with each other resulting in the amplitude of vibration growing without bound. However, when the follower forces are pulsating in nature, another kind of dynamic instability is also seen. If certain conditions are satisfied between the driving frequency and the transverse natural frequency, then dynamic instability called 'parametric resonance' occurs and the amplitude of transverse vibration increases without bound. The present review paper will discuss the aeroelastic behaviour of aerospace structures under nonconservative forces.

Modeling and Dynamic Stability Analysis of a Flying Beam Undertaking Pulsating Follower Forces Considering the Nonlinear Effect Due to Rigid Body Motion (강체운동 비선형 효과를 고려한 맥동 종동력을 받아 비행하는 보 구조물의 모델링 및 안정성 해석)

  • Hyun, Sang-Hak;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.510-515
    • /
    • 2000
  • Dynamic stability of a flying structure undertaking constant and pulsating axial forces is investigated in this paper. The equations of motion of the structure, which is idealized as a free-free beam, are derived by using the hybrid variable method and the assumed mode method. The structural system includes a directional control unit to obtain the directional stability. The analysis model presented in this paper considers the nonlinear effect due to rigid body motion of the beam. Dynamic stability of the system is influenced by the nonlinear effect. In order to examine the nonlinear effect, first the unstable regions of the linear system are obtained by using the method based upon Floquet's theory, and dynamic responses of the nonlinear system in the unstable region are obtained by using direct time integration method. Dynamic stability of the nonlinear system is determined by the obtained dynamic responses.

  • PDF