• Title/Summary/Keyword: Pulsatile blood flow

Search Result 97, Processing Time 0.026 seconds

분기관내 뉴턴유체와 혈액의 맥동유동특성에 관한 연구 (A study on the pulsatile flow characteristics of Newtonian and non-Newtonian fluids in the bifurcated tubes)

  • 서상호;유상신김영호노형운
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3607-3619
    • /
    • 1996
  • Experimental and numerical studies for three-dimensional pulsatile flows are conducted to investigate the flow characteristics in the bifurcated tubes. Velocity measurements in experimental study were made by both Pulsed Doppler Ultrasound(PDU) machine and Laser Doppler Anemometer(LDA) system. Glycerin is used for experimental study. Experimental results are used to verify the results of the numerical simulation. Flow characteristics of Newtonian fluid and blood in the bifurcated tubes under the steady and pulsatlie flows are numerically investigated. Finite volume method is employed for three-dimensional numerical simulations. Blood is considered as a non-Newtonian fluid and the constitutive equation of blood is used for the numerical analysis. Numerical analyses are focused on the flow patterns for various branch angles ranging from 30.deg. to 90.deg. and diameter ratios such as 1.0, 0.8, and 0.6. Pulsatile flow characteristics of blood are compared with those of Newtonian fluid. Parameter effects on axial velocity, pressure and wall shear stress distribution along the bifurcated tubes are discussed in terms of the branch angle, diameter ratio, and Reynolds number.

맥동 유동 발생을 위한 맥동 펌프의 설계 및 특성 분석 연구 (Design of pulsatile pump and performance test for pulsatile flow generation)

  • 주윤하;김경원;이연호;곽문규;이춘영;이종민;박철우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.149-155
    • /
    • 2013
  • 혈류 유동 연구를 위해서는 심장의 맥동 유동을 만들어 내는 것이 중요하다. 본 연구에서는 동맥혈류의 유동 해석을 위해 새롭게 설계된 심장 박동 모사 맥동펌프의 제작 및 그 성능에 관하여 시험을 수행하였다. 피스톤 펌프를 이용한 기본몸체 설계를 수행하였고 직류모터와 엔코더를 사용하여 회전수와 가속비를 설정할 수 있도록 하였으며, 시험결과는 전 영역에서 맥동 유동의 분포를 잘 따르고, 반복되는 맥동 주기의 편차도 작게 나타남을 확인하였다.

관류형 바이오리액터를 위한 박동 펌프 시스템 개발 (Development of the Pulsatile Pump System for a Perfusion Bioreactor)

  • 김학준;김선홍;정호윤;윤원수
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.526-533
    • /
    • 2011
  • This research is about the pulsatile pump system utilized in the perfusion bioreactor for the in vitro human tissue culture. A pulsatile pump system which can be applied to the culture of the vascular tissues including blood vessel is developed by using the idea of human heart's blood pumping into organs as followings: culture chamber, a pressurizing device which generates laminar pulsatile flow by controlling the x-sectional area of the culture media delivering tubing, a compliance chamber which supplies the pressuring device with a constant pressure, and a peristaltic pump which circulates the culture media in a circuit ranging from the culture chamber to the compliance chamber. The developed pulsatile pump system shows that a physiology of the human heart's blood pumping including pulsatile pressure waveform of systolic-diastolic pressure is well represented. Not only time domain but also frequency domain characteristics of pulsatile pump system which are necessary for the vascular tissue culture such as pulsatile pressure waveform's shape, the frequency, and the magnitude can be easily generated and manipulated by using the proposed system.

유정란 태아외부혈관의 단계적으로 분기되는 동맥 분지관 내부 혈액 유동특성의 in-vivo 계측 (In-vivo Measurements of Blood Flow Characteristics in the Arterial Bifurcation Cascade Networks of Chicken Embryo)

  • 이정엽;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2006년도 추계학술대회 논문집
    • /
    • pp.121-124
    • /
    • 2006
  • The arteries are very important in cardiovascular system and easily adapt to varying flow and pressure conditions by enlarging or shrinking to meet the given hemodynamic demands. The blood flow in arteries is dominated by unsteady flow phenomena due to heart beating. In certain circumstances, however, unusual hemodynamic conditions cause an abnormal biological response and often induce circulatory diseases such as atherosclerosis, thrombosis and inflammation. Therefore quantitative analysis of the unsteady pulsatile flow characteristics in the arterial blood vessels plays important roles in diagnosing these circulatory diseases. In order to verify the hemodynamic characteristics, in-vivo measurements of blood flow inside the extraembryonic arterial bifurcation cascade of chicken embryo were carried out using a micro-PIV technique. To analyze the unsteady pulsatile flow temporally, the (low images of RBCs were obtained using a high-speed CMOS camera at 250fps with a spatial resolution of $30{\mu}m\times30{\mu}m$ in the whole blood vessels. In this study, the unusual flow conditions such as flow separation or secondary flow were not observed in the arterial bifurcations. However, the vorticity has large values in the inner side of curvature of vessels. In addition, the mean velocity in the arterial blood vessel was decreased and pulsating frequency obtained by FFT analysis of velocity data extracted in front of the each bifurcation was also decreased as the bifurcation cascaded.

  • PDF

협착부가 존재하는 혈관의 유동 특성에 관한 수치 해석적 연구 (A Numerical Analysis on the Hemodynamic Characteristics in the blood vessel with Stenosis)

  • 정훈;박찬국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1987-1992
    • /
    • 2004
  • Hemodynamics behavior of the blood flow is influenced by the presence of the arterial stenosis. If stenosis is present in an artery, normal blood flow is disturbed. In the present study, characteristics of steady and pulsatile flow of non-Newtonian fluid, the effects of stenosised geometry are analyzed by numerical simulation. One interesting point is that non-symmetric solutions were obtained at severity stenosis, although the stenosis and the boundary condition were all axisymmetric.

  • PDF

맥동유동이 혈관내 내피세포의 형태변화에 미치는 영향 (Effect of the Pulsatile Flow on the Morphological Changes of the Endothelial Cells in Blood Vessel)

  • 서상호;유상신;조민태;박찬영;장준근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.531-534
    • /
    • 2000
  • The objective of this investigation is to find effects of the pulsatile flow on the morphological changes of the endothelial cell(E.C.) in blood vessel. The shear flow experiment system is used to get the morphological changes of the E.C. The shapes of E.C. are simulated by the cosine curves and computer simulation is used to calculate the pressure and shear stress fields on the E.C. The inlet boundary condition is given from the measured velocity data of femoral artery. The endothelial cells reduce their heights in the flow field so as to reduce the pressure and wall shear stress on the surface. As the exposed time increases, the shear stress and pressure on the E.C. are reduced under the pulsatile flow. The shear stresses on the cell surface show the minimum values during the deceleration phase.

  • PDF

협 부가 있는 동맥 내부에서의 맥동유동 (Pulsatile Flow in the Artery with Stenosis)

  • 손정락;주상우;서상호;심은보
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.39-44
    • /
    • 2002
  • The arterial stenosis related to the intimal thickening of the arterial wall is the main cause of many diseases in human cardiovascular system. Hemodynamic behavior of the blood flow is influenced by the presence of the arterial stenosis. In this study, effects of the pulsatile flow, caused by the periodic motion of the heart, on the blood flow and its interaction with the arterial stenosis are analyzed by the FEM-based computational fluid dynamics. As a result, it was found that the characteristics of the pulsatile flow in the artery with stenosis are quite different from those of the steady flow. And, the pulsatile flow condition affects the wall shear stress, which is one of the most important physiological parameters in the hemodynamics.

이중 박동성 인공심폐기의 동물 실험 (Application of the Pulsatile Cardiopulmonary Bypass in Animal Model)

  • 신화균;원용순;이재욱;허균;염욱;김승철;민병구
    • Journal of Chest Surgery
    • /
    • 제37권1호
    • /
    • pp.1-10
    • /
    • 2004
  • 배경: 기존에 사용되고 있는 인공심폐기는 비박동성 펌프로 회로 내부에 형성되는 압력이 낮고 혈구 손상이 적어서 표준 인공 심폐기로 선호되고 있다. 그러나 많은 실험적 연구들을 보면 박동성 관류가 혈역학, 대사, 장기의 기능, 미세 순환에 대하여 비박동성 관류보다 유익함을 알 수 있다. 그러나 박동성 인공심폐기는 높은 회로 내부 압력과 혈구손상이 해결되어야 할 문제점으로 개발이 어려웠다. 이 연구의 목적은 국내에서 제작된 이중 박동성 인공심폐기의 안전성 및 유효성을 알아보는 것이다. 대상 및 방법: 6마리의 송아지를 대상으로 이중 박동성 인공 심폐기 실험을 하였으며, 완전체외순환을 시켰다. 체외순환은 상,하 대정맥과 대동맥 사이를 우회하였으며, 막형 산화기를 사용하여 혈액을 산화시켰다. 산화기는 좌우측 펌프 중간에 위치시켰다. 순환 시간은 4시간이었다. 동맥혈가스분석, 혈액검사, 혈장 유리 혈색소를 측정하였으며, 맥압과 회로 내부압력을 관찰하였다. 측정은 인공 심폐기 구동 전과 순환 1, 2, 3, 4시간째에 측정하였다. 결과: 동맥혈 가스분석상 pH, 이산화 탄소분압은 모두 정상 범위였으며, 동맥혈 산소 분압은 100 mmHg 이상의 충분한 산화를 보였다. 혈장 유리혈색소는 완전 체외순환하여 4시간이 경과하면서 15.87 $\pm$5.63 mg/㎗로 점차 증가소견을 보였으나 20 mg/㎗ 이내였다. 혈액검사소견상 뚜렷한 이상소견은 없었다. 순환전 수축기 혈압은 97.5$\pm$5.7 mmHg이었으며 시간 경과하여도 100 mmHg 이상의 혈압을 유지하였다. 확장기 혈압은 72.2$\pm$7.7 mmHg이었으며 시간 경과하여도 잘 유지되었다. 평균 혈압은 순환 전 83$\pm$9.2 mmHg이었으며, 시간 경과 시 증가된 소견을 보였다. 펌프의 유량은 3.3 L/min이상을 유지할 수 있었다. 완전체외순환 동안의 혈압의 변화를 보면 순환 전 심장과 유사한 동맥혈압을 보였다. 결론: 이중 박동 구조를 이용한 박동성 인공심폐기는 효과적인 박동성 혈류를 제공하면서 혈구 세포손상도 적었으며, 혈액학적 및 혈역학적인 면에서도 우수한 결과를 보였다. 따라서 모든 심장수술의 인공심폐기로 사용되어질 경우 말초장기에 생리적이고 안정적인 혈류를 공급할 수 있을 것으로 기대된다.

Preliminary Study of a New Extracorporeal Membrane Oxygenator Development When Using Pulsatile Flow

  • Lee, Sa-Ram;Lee, Kyung-Soo;Jung, Jae-Hoon;Mun, Cho-Hay;Min, Byoug-Goo
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.387-391
    • /
    • 2007
  • An oxygenator is a very important artificial organ and widely used for patients with lung failure or during open heart surgery. Although an oxygenator has been widely studied worldwide to enhance its efficiency, studies on oxygenators, in particular when using a pulsatile blood flow, are domestically limited. Therefore, a new oxygenator was developed in the lab and animal experimental results are described in the paper. The oxygenator is composed of polycarbonate housing and polypropylene hollow fibers. It has a total length of 400 mm and a surface area of $1.7 m^2$. The animal experiment lasted for 4 hours. The blood flow rate was set to 2 L/min and a pulsatile blood pump, T-PLS (Twin-Pulse Life Support), was used. Samples were drawn at the oxygenator's inlet and outlet. The total hemoglobin (Hb), saturation oxygen ($sO_2$), and partial oxygen pressure ($pO_2$), partial $CO_2$ pressure ($pCO_2$), and plasma bicarbonate ion concentration ($HCO_3^-$) were measured. The oxygen and carbon dioxide transfer rates were also calculated based on the experimental data in order to estimate the oxygenator's gas transfer efficiency. The oxygen and carbon dioxide transfer rates were $16.4{\pm}1.58$ and $165.7{\pm}10.96 mL/min$, respectively. The results showed a higher carbon dioxide transfer rate was achieved with the oxygenator. Also, the mean inlet and outlet blood pressures were 162.79 and 137.92 mmHg, respectively. The oxygenator has a low pressure drop between its inlet and outlet. The aim of own preliminary study was to make a new oxygenator and review its performance when applying a pulsatile blood pump thus, confirming the possibility of a new oxygenator suitable for pulsatile flow.

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

  • Sung, Kun-Hyuk;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • 제21권2호
    • /
    • pp.119-126
    • /
    • 2009
  • A numerical analysis is performed to investigate the effect of rotation on the blood flow characteristics with four different angular velocities. The artery has a cylindrical shape with 50% stenosis rate symmetrically distributed at the middle. Blood flow is considered a non-Newtonian fluid. Using the Carreau model, we apply the pulsatile velocity profile at the inlet boundary. The period of the heart beat is one second. In comparison with no-rotation case, the flow recirculation zone (FRZ) contracts and its duration is reduced in axially rotating artery. Also wall shear stress is larger after the FRZ disappears. Although the geometry of artery is axisymmetry, the spiral wave and asymmetric flow occur clearly at the small rotation rate. It is caused that the flow is influenced by the effects of the rotation and the stenosis at same time.