• Title/Summary/Keyword: Pulsatile blood flow

Search Result 96, Processing Time 0.043 seconds

A study on the pulsatile flow characteristics of Newtonian and non-Newtonian fluids in the bifurcated tubes (분기관내 뉴턴유체와 혈액의 맥동유동특성에 관한 연구)

  • Seo, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3607-3619
    • /
    • 1996
  • Experimental and numerical studies for three-dimensional pulsatile flows are conducted to investigate the flow characteristics in the bifurcated tubes. Velocity measurements in experimental study were made by both Pulsed Doppler Ultrasound(PDU) machine and Laser Doppler Anemometer(LDA) system. Glycerin is used for experimental study. Experimental results are used to verify the results of the numerical simulation. Flow characteristics of Newtonian fluid and blood in the bifurcated tubes under the steady and pulsatlie flows are numerically investigated. Finite volume method is employed for three-dimensional numerical simulations. Blood is considered as a non-Newtonian fluid and the constitutive equation of blood is used for the numerical analysis. Numerical analyses are focused on the flow patterns for various branch angles ranging from 30.deg. to 90.deg. and diameter ratios such as 1.0, 0.8, and 0.6. Pulsatile flow characteristics of blood are compared with those of Newtonian fluid. Parameter effects on axial velocity, pressure and wall shear stress distribution along the bifurcated tubes are discussed in terms of the branch angle, diameter ratio, and Reynolds number.

Design of pulsatile pump and performance test for pulsatile flow generation (맥동 유동 발생을 위한 맥동 펌프의 설계 및 특성 분석 연구)

  • Joo, Yoon-Ha;Kim, Kyung-Won;Lee, Yeon-Ho;Kwak, Moon-Kyu;Lee, Choon-Young;Lee, Jong-Min;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.149-155
    • /
    • 2013
  • For in-depth research of blood flow, it is important to create pulsating flow like the blood flow from heart beat. In this study, we developed a heart mimicking pulsatile pump and evaluated its performances. Main body of pump was produced using a piston pump, and its rpm and duty ratio was modulated by DC motor and encoder. To determine the part dimensions, principle stress theory and simple fluidic pressure analysis were used. The performance of pulsating pump was evaluated by comparing the pressure values and their deviations according to experimental variables. For the results, the output value of pressure followed the distribution of pulsating flow and its deviation was negligible. Through this study, we expect the established pulsating pump can be widely used in study of blood flow produce easy ways to related researchers.

Development of the Pulsatile Pump System for a Perfusion Bioreactor (관류형 바이오리액터를 위한 박동 펌프 시스템 개발)

  • Kim, Hak-Jun;Kim, Sun-Hong;Chung, Ho-Yun;Yun, Won-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.526-533
    • /
    • 2011
  • This research is about the pulsatile pump system utilized in the perfusion bioreactor for the in vitro human tissue culture. A pulsatile pump system which can be applied to the culture of the vascular tissues including blood vessel is developed by using the idea of human heart's blood pumping into organs as followings: culture chamber, a pressurizing device which generates laminar pulsatile flow by controlling the x-sectional area of the culture media delivering tubing, a compliance chamber which supplies the pressuring device with a constant pressure, and a peristaltic pump which circulates the culture media in a circuit ranging from the culture chamber to the compliance chamber. The developed pulsatile pump system shows that a physiology of the human heart's blood pumping including pulsatile pressure waveform of systolic-diastolic pressure is well represented. Not only time domain but also frequency domain characteristics of pulsatile pump system which are necessary for the vascular tissue culture such as pulsatile pressure waveform's shape, the frequency, and the magnitude can be easily generated and manipulated by using the proposed system.

In-vivo Measurements of Blood Flow Characteristics in the Arterial Bifurcation Cascade Networks of Chicken Embryo (유정란 태아외부혈관의 단계적으로 분기되는 동맥 분지관 내부 혈액 유동특성의 in-vivo 계측)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.121-124
    • /
    • 2006
  • The arteries are very important in cardiovascular system and easily adapt to varying flow and pressure conditions by enlarging or shrinking to meet the given hemodynamic demands. The blood flow in arteries is dominated by unsteady flow phenomena due to heart beating. In certain circumstances, however, unusual hemodynamic conditions cause an abnormal biological response and often induce circulatory diseases such as atherosclerosis, thrombosis and inflammation. Therefore quantitative analysis of the unsteady pulsatile flow characteristics in the arterial blood vessels plays important roles in diagnosing these circulatory diseases. In order to verify the hemodynamic characteristics, in-vivo measurements of blood flow inside the extraembryonic arterial bifurcation cascade of chicken embryo were carried out using a micro-PIV technique. To analyze the unsteady pulsatile flow temporally, the (low images of RBCs were obtained using a high-speed CMOS camera at 250fps with a spatial resolution of $30{\mu}m\times30{\mu}m$ in the whole blood vessels. In this study, the unusual flow conditions such as flow separation or secondary flow were not observed in the arterial bifurcations. However, the vorticity has large values in the inner side of curvature of vessels. In addition, the mean velocity in the arterial blood vessel was decreased and pulsating frequency obtained by FFT analysis of velocity data extracted in front of the each bifurcation was also decreased as the bifurcation cascaded.

  • PDF

A Numerical Analysis on the Hemodynamic Characteristics in the blood vessel with Stenosis (협착부가 존재하는 혈관의 유동 특성에 관한 수치 해석적 연구)

  • Jung, H.;Park, C.G.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1987-1992
    • /
    • 2004
  • Hemodynamics behavior of the blood flow is influenced by the presence of the arterial stenosis. If stenosis is present in an artery, normal blood flow is disturbed. In the present study, characteristics of steady and pulsatile flow of non-Newtonian fluid, the effects of stenosised geometry are analyzed by numerical simulation. One interesting point is that non-symmetric solutions were obtained at severity stenosis, although the stenosis and the boundary condition were all axisymmetric.

  • PDF

Effect of the Pulsatile Flow on the Morphological Changes of the Endothelial Cells in Blood Vessel (맥동유동이 혈관내 내피세포의 형태변화에 미치는 영향)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Cho, Min-Tae;Park, Chan-Young;Chang, Jun-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.531-534
    • /
    • 2000
  • The objective of this investigation is to find effects of the pulsatile flow on the morphological changes of the endothelial cell(E.C.) in blood vessel. The shear flow experiment system is used to get the morphological changes of the E.C. The shapes of E.C. are simulated by the cosine curves and computer simulation is used to calculate the pressure and shear stress fields on the E.C. The inlet boundary condition is given from the measured velocity data of femoral artery. The endothelial cells reduce their heights in the flow field so as to reduce the pressure and wall shear stress on the surface. As the exposed time increases, the shear stress and pressure on the E.C. are reduced under the pulsatile flow. The shear stresses on the cell surface show the minimum values during the deceleration phase.

  • PDF

Pulsatile Flow in the Artery with Stenosis (협 부가 있는 동맥 내부에서의 맥동유동)

  • Son, Jeong-Rak;Ju, Sang-U;Seo, Sang-Ho;Sim, Eun-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • The arterial stenosis related to the intimal thickening of the arterial wall is the main cause of many diseases in human cardiovascular system. Hemodynamic behavior of the blood flow is influenced by the presence of the arterial stenosis. In this study, effects of the pulsatile flow, caused by the periodic motion of the heart, on the blood flow and its interaction with the arterial stenosis are analyzed by the FEM-based computational fluid dynamics. As a result, it was found that the characteristics of the pulsatile flow in the artery with stenosis are quite different from those of the steady flow. And, the pulsatile flow condition affects the wall shear stress, which is one of the most important physiological parameters in the hemodynamics.

Application of the Pulsatile Cardiopulmonary Bypass in Animal Model (이중 박동성 인공심폐기의 동물 실험)

  • Shin, Hwa-Kyun;Won, Yong-Soon;Lee, Jea-Yook;Her, Keun;Yeum, Yook;Kim, Seung-Chul;Min, Byoung-Goo
    • Journal of Chest Surgery
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Background: Currently, the cardiopulmonary machine with non-pulsatile pumps, which are low in internal circuit pressure and cause little damage to blood cells, is widely used. However, a great number of experimental studies shows that pulsatile perfusions are more useful than non-pulsatile counterparts in many areas, such as homodynamic, metabolism, organ functions, and micro-circulation. Yet, many concerns relating to pulsatile cardiopulmonary machines, such as high internal circuit pressure and blood cell damage, have long hindered the development of pulsatile cardiopulmonary machines. Against this backdrop, this study focuses on the safety and effectiveness of the pulsatile cardiopulmonary machines developed by a domestic research lab. Material and Method: The dual-pulsatile cardiopulmonary bypass experiment with total extracorporeal circulation was conducted on six calves, Extracorporeal circulation was provided between superior/inferior vena cava and aorta. The membrane oxygenator, which was placed between the left and right pumps, was used for blood oxygenation. Circulation took four hours. Arterial blood gas analysis and blood tests were also conducted. Plasma hemoglobin levels were calculated, while pulse pressure and internal circuit pressure were carefully observed. Measurement was taken five times; once before the operation of the cardiopulmonary bypass, and after its operation it was taken every hour for four hours. Result: Through the arterial blood gas analysis, PCO2 and pH remained within normal levels. PO2 in arterial blood showed enough oxygenation of over 100 mmHg. The level of plasma hemoglobin, which had total cardiopulmonary circulation, steadily increased to 15.87 $\pm$ 5.63 after four hours passed, but remained below 20 mg/㎗. There was no obvious abnormal findings in blood test. Systolic blood pressure which was at 97.5$\pm$5.7 mmHg during the pre-circulation contraction period, was maintained over 100 mmHg as time passed. Moreover, diastolic blood pressure was 72.2 $\pm$ 7.7 mmHg during the expansion period and well kept at the appropriate level with time passing by. Average blood pressure which was 83$\pm$9.2 mmHg before circulation, increased as time passed, while pump flow was maintained over 3.3 L/min. Blood pressure fluctuation during total extracorporeal circulation showed a similar level of arterial blood pressure of pre-circulation heart. Conclusion: In the experiment mentioned above, pulsatile cardiopulmonary machines using the doual-pulsatile structure provided effective pulsatile blood flow with little damage in blood cells, showing excellence in the aspects of hematology and hemodynamic. Therefore, it is expected that the pulsatile cardiopulmonary machine, if it becomes a standard cardiopulmonary machine in all heart operations, will provide stable blood flow to end-organs.

Preliminary Study of a New Extracorporeal Membrane Oxygenator Development When Using Pulsatile Flow

  • Lee, Sa-Ram;Lee, Kyung-Soo;Jung, Jae-Hoon;Mun, Cho-Hay;Min, Byoug-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.387-391
    • /
    • 2007
  • An oxygenator is a very important artificial organ and widely used for patients with lung failure or during open heart surgery. Although an oxygenator has been widely studied worldwide to enhance its efficiency, studies on oxygenators, in particular when using a pulsatile blood flow, are domestically limited. Therefore, a new oxygenator was developed in the lab and animal experimental results are described in the paper. The oxygenator is composed of polycarbonate housing and polypropylene hollow fibers. It has a total length of 400 mm and a surface area of $1.7 m^2$. The animal experiment lasted for 4 hours. The blood flow rate was set to 2 L/min and a pulsatile blood pump, T-PLS (Twin-Pulse Life Support), was used. Samples were drawn at the oxygenator's inlet and outlet. The total hemoglobin (Hb), saturation oxygen ($sO_2$), and partial oxygen pressure ($pO_2$), partial $CO_2$ pressure ($pCO_2$), and plasma bicarbonate ion concentration ($HCO_3^-$) were measured. The oxygen and carbon dioxide transfer rates were also calculated based on the experimental data in order to estimate the oxygenator's gas transfer efficiency. The oxygen and carbon dioxide transfer rates were $16.4{\pm}1.58$ and $165.7{\pm}10.96 mL/min$, respectively. The results showed a higher carbon dioxide transfer rate was achieved with the oxygenator. Also, the mean inlet and outlet blood pressures were 162.79 and 137.92 mmHg, respectively. The oxygenator has a low pressure drop between its inlet and outlet. The aim of own preliminary study was to make a new oxygenator and review its performance when applying a pulsatile blood pump thus, confirming the possibility of a new oxygenator suitable for pulsatile flow.

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

  • Sung, Kun-Hyuk;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • A numerical analysis is performed to investigate the effect of rotation on the blood flow characteristics with four different angular velocities. The artery has a cylindrical shape with 50% stenosis rate symmetrically distributed at the middle. Blood flow is considered a non-Newtonian fluid. Using the Carreau model, we apply the pulsatile velocity profile at the inlet boundary. The period of the heart beat is one second. In comparison with no-rotation case, the flow recirculation zone (FRZ) contracts and its duration is reduced in axially rotating artery. Also wall shear stress is larger after the FRZ disappears. Although the geometry of artery is axisymmetry, the spiral wave and asymmetric flow occur clearly at the small rotation rate. It is caused that the flow is influenced by the effects of the rotation and the stenosis at same time.