• Title/Summary/Keyword: Pulp paper

Search Result 2,562, Processing Time 0.024 seconds

Facial Expression Control of 3D Avatar using Motion Data (모션 데이터를 이용한 3차원 아바타 얼굴 표정 제어)

  • Kim Sung-Ho;Jung Moon-Ryul
    • The KIPS Transactions:PartA
    • /
    • v.11A no.5
    • /
    • pp.383-390
    • /
    • 2004
  • This paper propose a method that controls facial expression of 3D avatar by having the user select a sequence of facial expressions in the space of facial expressions. And we setup its system. The space of expression is created from about 2400 frames consist of motion captured data of facial expressions. To represent the state of each expression, we use the distance matrix that represents the distances between pairs of feature points on the face. The set of distance matrices is used as the space of expressions. But this space is not such a space where one state can go to another state via the straight trajectory between them. We derive trajectories between two states from the captured set of expressions in an approximate manner. First, two states are regarded adjacent if the distance between their distance matrices is below a given threshold. Any two states are considered to have a trajectory between them If there is a sequence of adjacent states between them. It is assumed . that one states goes to another state via the shortest trajectory between them. The shortest trajectories are found by dynamic programming. The space of facial expressions, as the set of distance matrices, is multidimensional. Facial expression of 3D avatar Is controled in real time as the user navigates the space. To help this process, we visualized the space of expressions in 2D space by using the multidimensional scaling(MDS). To see how effective this system is, we had users control facial expressions of 3D avatar by using the system. As a result of that, users estimate that system is very useful to control facial expression of 3D avatar in real-time.

Effect of Strength Increasing Sizes on the Quality of Fiberboard (섬유판(纖維板)의 증강(增强)사이즈제(齊)가 재질(材質)에 미치는 영향(影響))

  • Shin, Dong So;Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.30 no.1
    • /
    • pp.19-29
    • /
    • 1976
  • The fiberboard and paper mills in this country are much affected by the price hikes and shortage of phenolic resins, since phenolic acid as a raw material depends on imported good. It is prerequisite to fiberboard industry to help replace with other sized and stabilize the prices and supply of them, improving the quality of boards. Thus, the present study was carried out to examine the effect of strength increasing sized such as urea formaldehyde resin (anion and cation type) and urea melamine copolymer resin, on the quality of the wet forming hardboard, and comparing them with two types of proprietary modified melamine resins, and ordinary size, phenol resin. The Asplund pulp was prepared from wood wastes mixed with 20 percent of lauan and 80 percent of pines as a fibrous material. After sizing agents were added at a pH of 4.5 for 10 minutes with alum in the beater, the stock was made in the form of wet sheet, prepared, and then performed by hot pressing cycle: $180^{\circ}C$, $50-6-5kg/cm^2$, 1-2-7 minutes. The properties of hardboard were examined after air conditioning. The results obtained are summarized as follows: 1. There is a significant difference in specific gravity among hardboards that were treated with strength increasing resins, but no difference is effected by the increase in the resin content. In the case of modified melamine resin, its specific gravity is highest. The middle group comprises cation type of urea resin, anion type of urea resin, and acid colloid of urea-melamine copolymer resin. The lowest is phenolic resin. 2. The difference of the moisture content of hardboard both by the resins and by the amount of each resin applied is significant. The moisture content of hardboard becomes lower along with the increase of each resin content, but there is no difference between 2 and 3 percent. 3. For water absorption, there is a significant difference both in the adhesives used and in the amount of paraffin wax emulsion. The water resistance becomes higher inn proportion to the content of the paraffin wax emulsion. To satisfy KS F standards of the water resistance, a proprietary modified melamine resin (p-6100) and modified cation type of urea resin (p-1500) do not require any paraffin wax emulsion, but in the case of anion type of urea resin, cation type of urea resin, and urea-melamine copolymer resin, 1 percent of paraffin wax emulsion is needed, and 2 percent of paraffin wax emulsion in the case of phenolic resin. 4. The difference of flexural strength of hardboard both by the resins and by the amount of each resin is significant. Modified melamine resin shows the highest degree of flexural strength. Among the middle group are urea-melamine copolymer resin, p-1500, anion type of urea resin, and cation type of urea resin. Phenolic resin is the lowest. The cause may be attributable to factors combined with the pressing temperature, sizing effect, and thermal efficiency of press platens heated electrically. 5. Considering the economic advantages and properties of hardboard, it is proposed that urea-melamine copolymer resin and cation type of urea resin be used for the development of the fiberboard industry. It is desirable to further develop the modified urea-melamine copolymer resin and cation type of urea resin through continuous study.

  • PDF