• Title/Summary/Keyword: Pulp capping materials

Search Result 24, Processing Time 0.016 seconds

Microleakage and Shear Bond Strength of Biodentine at Different Setting Time (BiodentineTM의 경화시간에 따른 미세누출과 전단결합강도)

  • Song, Yong Ho;Lee, Nanyoung;Lee, Sangho;Jih, Myeongkwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.3
    • /
    • pp.344-353
    • /
    • 2018
  • The purposes of this study were to evaluate microleakage of Biodentine, one of the tricalcium silicate based pulp-capping materials, and to compare the shear bond strength between composite resin and Biodentine with different setting times. For microleakage evaluation, 70 bovine teeth were used. Cavities were formed on the labial surfaces and filled with Biodentine. The teeth were divided into seven groups, each consisting of 10 teeth. The specimens were prepared by applying the composite resin on the upper side after different setting times. To evaluate shear bond strength, 210 acrylic resin blocks with central grooves were prepared, and the grooves were filled with Biodentine. The acrylic resin blocks were divided into seven groups of 30 specimens each, and the specimens were prepared by applying the composite resin on the upper side after different setting times. In samples with setting time of 24 hours or longer period, the microleakage between composite resin and Biodentine was reduced significantly while the shear bond strength increased to offset the polymerization shrinkage of the composite resin. Setting Biodentine for more than 24 hours before composite resin restoration would lead to more favorable clinical result.

THE CYTOTOXICITY ON L929 CELLS AND ANTIMICROBIAL EFFECT ON SEVERAL STREPTOCOCCI OF CALCIUM HYDROXIDE (수산화칼슘의 L929 세포독성 및 연쇄구균에 대한 항균효과에 관한 연구)

  • Yu, Young-Dae;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.538-548
    • /
    • 1995
  • Calcium hydroxide has been used not only as pulp capping and pulpotomy agents in the operative dentistry, but dressing and temporary filling materials in root canal treatment. Calcium hydroxide was known to stimulate odontoblast to produce new reparative dentin and to eliminate microorganims effectively in the infected root canals. The purpose of this study was to evaluate the effect of calcium hydroxide solution on cultured L929 cells and its antibacterial effect on several streptococci. Calcium hydroxide solution (0.121g/100ml) was added to L929 cells and cell viability was measured using 3-(4,5-dimethylthiazol-2-yl) -2,5-dimethyltetrazolium bromide (MTT) and neutral red (NR) dye. Calcium hydroxide solution (20, 40, 60, 80, 100 and $150{\mu}l$) was added to L929 cells in 96-well microplates for 1, 4 and 24 hours respectively. Cell viability was gradually decreased when the volume and exposure time of calcium hydroxide solution were increased. When $150{\mu}l$ of calcium hydroxide was applied to L929 cells for 24 hours, there was more than fifty percent reduction of cell viability. Calcium hydroxide solution (20g/100ml) showed antibacterial effect against S. uberis, S. intermedius and S. mitis after thirty-second exposure. But 0.121g/100ml concentration of cacium hydroxide solution exhibited no antibacterial effect on six streptococci after one-hour exposure.

  • PDF

Regenerative Endodontic Procedure in Korean Children and Adolescents: A Case Report (한국 소아청소년 근관치료 영역에서 재생치료, 근관치료재생술에 대한 증례보고)

  • An, So-Youn;Kim, Jin-Kyoung;Shim, Youn-Soo
    • Journal of dental hygiene science
    • /
    • v.16 no.4
    • /
    • pp.317-322
    • /
    • 2016
  • Mineral trioxide aggregate (MTA) is widely used in endodontic therapy as a pulp-capping material, root or furcal perforation repair material, and for apexification and obturation of the root canal system. The purpose of this study was to formally document cases of MTA application in South Korean children and adolescents. Through this research, the practice of using MTA will be introduced and familiarized to the clinical practitioners. This study involved endodontic treatment using MTA for fractured crowns in 11- and 12-year-old. The children were followed up for 12 months until the pulp vitality was confirmed; in young permanent teeth with immature roots, the pulp is integral to the process of apexogenesis. These observational results regarding the use of MTA as an apexification material in non-vital immature permanent incisors appear to provide promising results in the search for new materials to meet existing endodontic needs.

Comparison of gene expression profiles of human dental pulp cells treated with mineral trioxide aggregate and calcium hydroxide (인간치수세포에 Mineral Trioxide Aggregate와 수산화칼슘 제재 적용 시 유전자 발현 양상 비교)

  • Kim, Yong-Beom;Shon, Won-Jun;Lee, Woo-Cheol;Kum, Kee-Yeon;Baek, Seung-Ho;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.397-408
    • /
    • 2011
  • Objectives: This study investigated changes in gene expressions concerning of differentiation, proliferation, mineralization and inflammation using Human-8 expression bead arrays when white Mineral Trioxide Aggregate and calcium hydroxide-containing cement were applied in vitro to human dental pulp cells (HDPCs). Materials and Methods: wMTA (white ProRoot MTA, Dentsply) and Dycal (Dentsply Caulk) in a Teflon tube (inner diameter 10 mm, height 1 mm) were applied to HDPCs. Empty tube-applied HDPCs were used as negative control. Total RNA was extracted at 3, 6, 9 and 24 hr after wMTA and Dycal application. The results of microarray were confirmed by reverse transcriptase polymerase chain reaction. Results: Out of the 24,546 genes, 43 genes (e.g., BMP2, FOSB, THBS1, EDN1, IL11, COL10A1, TUFT1, HMOX1) were up-regulated greater than two-fold and 25 genes (e.g., SMAD6, TIMP2, DCN, SOCS2, CEBPD, KIAA1199) were down-regulated below 50% by wMTA. Two hundred thirty nine genes (e.g., BMP2, BMP6, SMAD6, IL11, FOS, VEGFA, PlGF, HMOX1, SOCS2, CEBPD, KIAA1199) were up-regulated greater than two-fold and 358 genes (e.g., EDN1, FGF) were down-regulated below 50% by Dycal. Conclusions: Both wMTA and Dycal induced changes in gene expressions related with differentiation and proliferation of pulp cells. wMTA induced changes in gene expressions related with mineralization, and Dycal induced those related with angiogenesis. The genes related with inflammation were more expressed by Dycal than by wMTA. It was confirmed that both wMTA and Dycal were able to induce gene expression changes concerned with the pulp repair in different ways.