• Title/Summary/Keyword: Pulling mechanism

Search Result 23, Processing Time 0.017 seconds

Design of Large-size Marionette Robot Mechanism System Capable of Stage Performances (무대 공연이 가능한 대형 줄 인형 로봇 기구 시스템 설계)

  • Lim, Hong-Seok;Cho, Min-Su;Choi, Soon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1205-1211
    • /
    • 2012
  • A marionette is a moving puppet that can be made to perform several actions by pulling wires connected to the puppet. Because a marionette is operated by hand, a stage performance with a human-sized marionette is impossible. However, a marionette robot operated using a wire controller could be used as a human-sized marionette to conduct a stage performance with other robots or actors. In addition, by using mobile stages that utilize mobile platforms, a wire controller, and the marionette robot body, the large marionette robot system designed in this study can be made to rotate and translate freely in a stage performance. The feasibility of the structure of the marionette robot wire control system is verified by using dynamics analysis. Furthermore, the efficiency and safety of the robot is demonstrated by manufacturing and operating a prototype robot.

The Effect on the Hip Muscle Activation of the Fall Direction and Knee Position During a Fall

  • Lee, Kwang Jun;Lim, Kitaek;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.84-91
    • /
    • 2021
  • Background: A hip fracture may occur spontaneously prior to the hip impact, due to the muscle pulling force exceeding the strength of the femur. Objects: We conducted falling experiments with humans to measure the activity of the hip muscles, and to examine how this was affected by the fall type. Methods: Eighteen individuals fell and landed sideways on a mat, by mimicking video-captured real-life older adults' falls. Falling trials were acquired with three fall directions: forward, backward, or sideways, and with three knee positions at the time of hip impact, where the landing side knee was free of constraint, or contacted the mat or the contralateral knee. During falls, the activities of the iliopsoas (Ilio), gluteus medius (Gmed), gluteus maximus (Gmax) and adductor longus (ADDL) muscles were recorded. Outcome variables included the time to onset, activity at the time of hip impact, and timing of the peak activity with respect to the time of hip impact. Results: For Ilio, Gmed, Gmax, and ADDL, respectively, EMG onset averaged 292, 304, 350, and 248 ms after fall initiation. Timing of the peak activity averaged 106, 96, 84, and 180 ms prior to the hip impact, and activity at the time of hip impact averaged 72.3, 45.2, 64.3, and 63.4% of the peak activity. Furthermore, the outcome variables were associated with fall direction and/or knee position in all but the iliopsoas muscle. Conclusion: Our results provide insights on the hip muscle activation during a fall, which may help to understand the potential injury mechanism of the spontaneous hip fracture.

Design of Seat Belt Pretensioner driven by Elastic Force (탄성력 기반 안전벨트 프리텐셔너 설계)

  • Yongsu Lee;Seyun Park;Hyuneun Lee;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.545-550
    • /
    • 2023
  • A pretensioner is a safety device that protects occupants by pulling the seat belt in the event of a vehicle collision. However, since the pretensioner is driven by a explosive method, it is necessary to replace not only the gas generator but also all connecting parts including the manifold after an accident. Therefore, in this paper, we propose an elastic force-based pretensioner that can be used safely and semi-permanently. After analyzing the operating mechanism of the existing pretensioner from a thermodynamic/dynamic point of view, the spring stiffness that can be deployed within an appropriate operating time was determined by converting the gas explosion energy into elastic energy. In addition, the coil spring shape that satisfies the elastic stiffness was designed in consideration of the vehicle interior installation standard. Finally, the operating performance of the pretensioner driven by elastic force was verified through fabrication.