• Title/Summary/Keyword: Pull-out Behavior

Search Result 191, Processing Time 0.022 seconds

An Experimental Study on Flexural/Shear Load Properties of SC(Steel Plate Concrete) Structure with Reinforced Concrete Joint (강판콘크리트 구조 이질접합부의 면외 휨/면내 전단하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hwang, Kyeong-Min;Hahm, Kyung-Won;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • This paper describes an experimental study on the mechanical characteristic and behavior of a structure that has a joint between the reinforced concrete (RC) member and steel plate concrete (SC) member. An out-of-plane flexural test on an L-type test specimen and in-plane shear test on an I-type test specimen were carried out by means of repeated cyclic loading until their failure. Based on the results, the former showed pull-out failure mode of anchored vertical bars while the latter exhibited flexural failure mode of the basement member. These results reveal that the maximum capacity of the specimens is 96% and 82%, respectively, compared with the theoretical value.

Assessment of Applicability of Pretentioned Soil-Nail Systems with in-situ monitoring (현장 계측을 통한 프리텐션 쏘일네일링 시스템의 적용성 평가)

  • Lee, Hyuk-Jin;Ahn, Kwang-Kuk;Kim, Hong-Taek;Bang, Yoon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.320-329
    • /
    • 2005
  • The use of diverse methods for the retaining system has been continuously increased in order to maintain the stability during excavation. However, ground anchor system occasionally may have the restriction in urban excavation sites nearby the existing structures because of space limitation. In this case, soil nailing system with relatively short length of nails could be efficiently useful as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in excavating the zone of weak soils or nearby the existing structures. Therefore, applying the pretension force to the soil nails then could play important roles to reduce deformations mainly in an upper part of the nailed-soil excavation system as well as to improve the local slope stability. In this study, a newly modified soil nailing technology named as the PSN(Pretention Soil Nailing) is developed to reduce both facing displacements and ground surface settlements during top-down excavation process as well as to increase the global slope stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the field tests including pull-out tests were fulfilled to investigate the behavior of characteristics for PSN system. All results of tests were also analyzed to provide a fundamental and efficient design.

  • PDF

A study on the characteristics of multi load transfer ground anchor system (다중정착 지반앵커의 하중전달 특성에 관한 연구)

  • Kim, Ji-Ho;Jeong, Hyeon-Sic;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.25-50
    • /
    • 2014
  • In order to identify a load transfer mechanism of ground anchors, the behavior of multi load transfer ground anchor systems was investigated and compared with those of compression type anchors and tension type anchors. Large scale model tests were performed and stress-strain relationships were obtained. The load transfer mechanism of ground anchors was also investigated in the field tests. Finally, numerical analyses to predict the load-displacement relationships of anchors were conducted. It is concluded that the load transfer characteristics of MLT anchors are mechanically much more superior in the pull-out resistance effect than those of existing compression and tension type anchors. From the results of research work, we could suggest that the max pull-out capacity of anchor capacity to each the soil condition. Also, the MLT anchors can be used to achieve both structural enhancement and economic construction in earth retaining or supporting structures.

Failure of composite sandwich joints under pull-out loading (풀아웃 하중을 받는 복합재 샌드위치 체결부의 파손거동 연구)

  • Park, Yong-Bin;Yang, Hyeon-Jeong;Kweon, Jin-Hwe;Choi, Jin-Ho;Cho, Hyun-Il
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2011
  • The failure of composite sandwich joints was experimentally investigated. A total of 30 joint specimens of 5 different types were tested with various fastening methods and core materials. In the NomexTM core sandwich joints, the core shear buckling was commonly observed in all the specimens which was followed by the slope change of the load-displacement curve. After the shear buckling, however, the joints carried additional loads of 50~200% over the buckling loads and then finally failed in the upper face breakage. The joints of PMI foam core showed the shear failure of the core instead of shear buckling and experienced the sharp drop of the carried load. Considering the failure modes, while both the core and face properties are important in the $Nomex^{TM}$ core joints, core shear strength seems to be the critical factor for the foam core joints.

Study on Adhesive Strength of Polymer Modified Cement Mortar for Maintenance in Concrete Structure (콘크리트 구조물 보수용 폴리머시멘트 모르타르의 부착강도 특성에 관한 연구)

  • Park, Sang-Soon;Kim, Jung-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.128-135
    • /
    • 2010
  • Polymer-modified cement mortar(PCM) has been widely used for strengthening of the concrete structures due to its excellent physical properties such as high strength and durability. Adhesive strength or behavior, on the other hands, between PCM and concrete is very important in strengthening the concrete member using PCM. Therefore the adhesive failure mechanism between PCM and concrete should be fully verified and understood. This study was performed to evaluate adhesive strength of PCM to the concrete by the direct pull-out test. In the direct pull-out tests, the adhesive strength under the various pre-treatment conditions such as immersion, thunder shower, freezing and thawing are evaluated. Also, the field direct pull-out test are performed to investigate the adhesive strength of mock-up test specimens. In the results of the test, the adhesive strength value by field test are lower than those of the standard curing condition. From these comparison and investigation, field test result was similar with the thunder shower test result. The results of the test was used to evaluate the korean industrial standard of polymer modified cement mortars for maintenance in concrete.

Failure Behavior and Separation Criterion for Strengthened Concrete Members with Steel Plates (강판과 콘크리트 접착계면의 파괴거동 및 박리특성)

  • 오병환;조재열;차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 2002
  • Plate bonding technique has been widely used in strengthening of existing concrete structures, although it has often a serious problem of premature falure such as interface separation and rip-off. However, this premature failure problem has not been well explored yet especially in view of local failure mechanism around the interface of plate ends. The purpose of the present study is, therefore, to identify the local failure of strengthened plates and to derive a separation criterion at the interface of plates. To this end, a comprehensive experimental program has been set up. The double lap pull-out tests considering pure shear force and half beam tests considering combined flexure-shear force were performed. The main experimental parameters include plate thickness, adhesive thickness, and plate end arrangement. The strains along the longitudinal direction of steel plates have been measured and the shear stress were calculated from those measures strains. The effects of plate thickness, bonded length, and plate end treatment have been also clarified from the present test results. Nonlinear finite element analysis has been performed and compared with test results. The Interface properties are also modeled to present the separation failure behavior of strengthened members. The cracking patterns as well as maximum failure loads agree well with test data. The relation between maximum shear and normal stresses at the interface has been derived to propose a separation failure criterion of strengthened members. The present study allows more realistic analysis and design of externally strengthened flexural member with steel plates.

Ultimate Uplift Capacity of Permanent Anchor Embedded in Weathered Rock (풍화암에 근입된 영구 앵커의 극한인발력)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Jin-Hwang
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.195-203
    • /
    • 2001
  • The purpose of this study is to estimate ultimate uplift capacity of permanent anchor which was cast into weathered rock. The ultimate uplift capacity was estimated from the load-displacement curve of four different anchors which have different bond length. The creep test was performed for 15minutes under the maximum load of each step in order to understand the load-transfer property of permanent anchor and to decide which anchor to choose. The destruction range of soil due to the changes in load was estimated by installing dial gauge on the ground which was cast into the weathered rock. Ultimately, the study on the behavior of the anchor case into the weathered rock was performed by comparing and analyzing the estimated result of the UUC obtained by the full scale pull out test in the field with the exsting theoretical and practical results of soil and rock anchor.

  • PDF

Strengthening Efficiency of Ring Type Steel Fibers in Concrete Panels (콘크리트 패널 내 원형 강섬유의 보강 효율성)

  • 조원택;이차돈;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.327-332
    • /
    • 2001
  • It is generally observed that steel fiber reinforced concrete with traditional straight steel fibers overcomes brittle nature of plain concrete by failure mechanisms by fiber pull-out rather than fiber rupture resulting from fiber yielding or concrete fracture at failured surface. Ring type steel fibers in concrete which is confined in concrete matrix and has better orientation, thus, lead to fiber yielding and concrete fracture as well as increase of flexural behavior of concrete more efficiently, Comparative experimental study is performed in order to measure the relative efficiencies of steel fiber reinforced concrete reinforced with two different fibers. It is found that better toughness is obtained from the ring type steel fiber reinforced concrete than from straight steel fiber reinforced concrete under flexural loading.

  • PDF

Experimental Investigation of the Dynamic Fracture Toughness for Aluminum Alumina Whisker Metal Matrix Composites (콤포케스팅법에 의해 제조된 알루미늄 금속복합재료의 동파괴 인성치에 관한 연구)

  • Kim, M.S.;Lee, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.152-160
    • /
    • 1993
  • This paper presents experimental study of the static and dynamic fracture toughness behavior of a A1-6061 aluminum alloy reinforced alumina( .delta. -A1$_{2}$0$_{3}$) whiskers with 5%, 10%, 15% volume fraction. The static fracture tests using three-point bending specimen were performed by UTM25T. And drop weight impact tester performing dynamic fracture tests was used to measure dynamic locads applied to a fatigue-precracked specimes. The oneset of crack initiation was detected uwing a strain gage bonded near a crack tip. The value of static fracture toughness $K_{IC}$ and dynamic fracture toughness $K_{ID}$ were decided on the basis of linear elastic fracture mechanics. The effects of fiber volume fraction and loading on fracture toughness were investigated. The distribution of whiskers, bonding state and fracture interfaces involved in void, fiber pull-out state were investigated by optical microscopy(OM) and scanning electron microscopy(SEM)

  • PDF

Temperature Effect on Impact Fracture Behavior of GF/PP Composites (GF/PP 복합재료의 충격파괴거동에 대한 온도효과)

  • Koh, Sung-Wi;Um, Yoon-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2005
  • The main goal of this work is to study the effects of temperature and volume fraction of fiber on the Charpy impact test with GF/PP composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of 60^{\circ}C$ to -50^{\circ}C$ by impact test. The critical fracture energy increased as the fiber volume fraction ratio increased. The critical fracture energy shows a maximum at ambient temperature and it tends to decreases as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.