• Title/Summary/Keyword: Pu 산화수

Search Result 7, Processing Time 0.02 seconds

Investigation on the spectroscopic characteristics for Pu oxidation state in acid and alkali medium (산 및 알칼리 매질에서 Pu 산화수에 대한 분광학적 특성 조사)

  • Lee, Myung-Ho;Kim, Jong-Yun;Kim, Won-Ho;Jung, Euo-Chang;Jee, Kwang-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.103-108
    • /
    • 2007
  • The absorption spectra of Pu in stock solution were measured using a UV-Vis-NIR spectrophotometer after dissolving $PuO_2\;with\;HNO_3$, HF and $HClO_4$. The spectroscopic characteristics of Pu (III, IV, VI) in acidic, neutral and alkali media were investigated. Also, the intensities and position of major peaks for Pu(VI) were observed with increasing acidic and alkali concentration. The variation of oxidation states of Pu(VI) with an adding reducing reactant was investigated in HCl and NaOH medium.

  • PDF

Separation of Plutonium Oxidation States by Ion Chromatography (이온크로마토그래피를 이용한 산화수별 플루토늄의 분리)

  • Kim, Seung Soo;Jun, Kwan Sik;Kang, Chul Hyung
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.28-33
    • /
    • 2001
  • The ion chromatography for the separation of plutonium species which are suggested to be $Pu^{3+}$, $Pu^{4+}$, $PuO_2{^+}$ and $PuO_2{^{2+}}$ in natural water was studied. Two separation methods were performed; 1) two-column method containing each of $SiO^-$ and SiO-$SO_3{^-}$ cation exchanger, 2) IC with AG11 column and the eluent of oxalate/nitric acid. Separation conditions for $Eu^{3+}$, $Th^{4+}$, $NpO_2{^+}$, $UO_2{^{2+}}$ in place of plutonium species were acquired from preliminary tests. When these conditions were applied to separate the plutonium species, two-column method was separated them successfully. However, the IC method with oxalate eluent was difficult in the separation of plutonium species due to the change of $Pu^{3+}$ and $PuO_2{^{2+}}$ to $Pu^{4+}$ and $PuO_2{^+}$ respectively.

  • PDF

Determination of Pu Oxidation states in the HCl Media Using with UV-Visible Absorption Spectroscopic Techniques (UV-Visible 흡수분광학법을 이용한 염산매질내 Pu 산화상태 측정)

  • Lee, Myung-Ho;Suh, Mu-Yeol;Park, Kyoung-Kyun;Park, Yeong-Jae;Kim, Won-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The spectroscopic characteristics of Pu (III, IV, V, VI) in the HCl media were investigated by measuring Pu oxidation states using a UV-Vis-NIR spectrophotometer (400-1200 nm) after adjusting Pu oxidation states with oxidation/reduction reagents. Pu in stock solution was reduced to Pu(III) with $NH_2OH$ HCl, and oxidized to Pu(IV) and Pu(VI) with $NaNO_2$ and $HClO_4$, respectively. Also, Pu(V) was adjusted in the Pu(VI) solution with $NH_2OH$ HCl. The major absorption peaks of Pu (IV) and Pu(III) were measured in the 470 m and 600 nm, respectively. The major absorption peaks of Pu (VI) and Pu(V) were measured in the 830 nm and 1135 nm, respectively. There was not found to be significant changes of UV-Vis absorption spectra for Pu(III), Pu(IV) and Pu(VI) with aging time, except that an unstable Pu(V) immediately reduced to Pu(III).

  • PDF

Separation of $PuO_2^{2+}$, $Pu^{4+}$ and $Pu^{3+}$ by Ion Chromatography (이온크로마토그래피에 의한 $PuO_2^{2+}$, $Pu^{4+}$$Pu^{3+}$의 분리)

  • Joe, Kih Soo;Kim, Jong Gu;Park, Yang Soon;Kim, Do Yang;Eom, Tae Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.3
    • /
    • pp.280-285
    • /
    • 1999
  • Separation of plutonium species was studied by ion chromatography installed in a glove box for the determination of plutonium element. The plutonium species, $PuO_2^{2+},\; PC^{4+}\; and\; Pu^{3+}$, were stably separated on dynamically equilibrated cation exchanger using 1-octanesulfonate and ${\alpha}$-HiBA eluant after controlling the plutonium oxidation states with KI, $NaNO_2\;or=;KBrO_3$ based on the oxidation-reduction potentials. For the separation of plutonium from other matrix, $PuO_2^{2+}\; and\; Pu^{4+}$ were reduced to $Pu^{3+}$ with KI and $NaNO_2$ followed by cation exchange chromatography.

  • PDF

비산화물 세라믹 핵연료 : 특성, 제조 및 성능

  • Lee, Jeong-Won;Kim, Bong-Gu;Lee, Yeong-U;Son, Dong-Seong
    • Ceramist
    • /
    • v.1 no.2
    • /
    • pp.63-73
    • /
    • 1998
  • 현재 원자력발전에 사용되는 핵연료는 산화물 핵연료가 그 주종을 이루고 있다. 특히, 고속증식로용 핵연료로는 최근까지 혼합산화물 핵연료가 개발, 사용되어 왔다. 그러나 이 산화물 핵연료 못지 않게 경제성 및 안전성 관점에서 이를 능가할 수 있는 핵연료 재료로서 탄화물 및 질화물 등의 비산화물 세라믹 핵연료도 그 동안 꾸준히 연구되어 왔으며, 최근 들어서는 새로운 개념의 Pu 혹은 Minor Actinide burning용 핵연료 후보재료로도 각광을 받고 있다. 이들 비산화물 세라믹 핵연료는 산화물 핵연료에 비해 증식능력이 좋아, 특히 8~12년의 증배시간을 갖는 고속증식로 개발의 가능성을 보여준다. 이는 그 특성이 산화물 핵연료의 경우에 비해 더 높은 중금속(Heavy Metal) 밀도와 열전도도를 갖는 장점 때문이며, 이로 인해 높은 선출력(linear power)을 낼 수 있어 소형 노심의 설계가 가능하다. 본 고에서는 고속증식로 뿐만 아니라 다른 형태의 원자로에의 사용에서도 그 응용가치와 개발의 여지가 충분히 있는 비산화물 세라믹 핵연료의 기초특성, 제조기술, 그리고 그 성능에 대하여 비교, 분석함으로써 앞으로의 핵연료 개발연구에 보다 효율적이고 다양한 방향을 제시하고자 하였다.

  • PDF

A Kinetic Study of Thermal-Oxidative Decomposition of Waste Polyurethane (폐폴리우레탄의 열적 산화분해에 대한 속도론적 연구)

  • Jun, Hyun Chul;Oh, Sea Cheon;Lee, Hae Pyeong;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2006
  • The kinetics of the thermal-oxidative decomposition of waste polyurethane (PU) according to oxygen concentration has been studied using a non-isothermal thermogravimetric technique at several heating rates from 10 to $50^{\circ}C/min$. A kinetic model accounting for the effects of the oxygen concentration by the differential and integral method based on Arrhenius equation was proposed to describe the thermal-oxidative decomposition of waste PU. To obtain the information on the kinetic parameters such as activation energy, reaction order, and pre-exponential factor, the thermogravimetric analysis curves and its derivatives have been analyzed using the kinetic analysis method proposed in this work. From this work, it was found that reaction orders for oxygen concentration had a negative sign, and activation energy decreased as the oxygen concentration increased. It was also found that the kinetic parameters obtained from the integral method using the single heating rate experiments varied with heating rates. Therefore, it is thought that the differential method using the multiple heating rate experiments more effectively represents the thermal-oxidative decomposition of waste polyurethane.

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.