• Title/Summary/Keyword: Psychological reduction scale based on multi-theory fusion algorithm

Search Result 1, Processing Time 0.019 seconds

Crowd Psychological and Emotional Computing Based on PSMU Algorithm

  • Bei He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2119-2136
    • /
    • 2024
  • The rapid progress of social media allows more people to express their feelings and opinions online. Many data on social media contains people's emotional information, which can be used for people's psychological analysis and emotional calculation. This research is based on the simplified psychological scale algorithm of multi-theory integration. It aims to accurately analyze people's psychological emotion. According to the comparative analysis of algorithm performance, the results show that the highest recall rate of the algorithm in this study is 95%, while the highest recall rate of the item response theory algorithm and the social network analysis algorithm is 68% and 87%. The acceleration ratio and data volume of the research algorithm are analyzed. The results show that when 400,000 data are calculated in the Hadoop cluster and there are 8 nodes, the maximum acceleration ratio is 40%. When the data volume is 8GB, the maximum scale ratio of 8 nodes is 43%. Finally, we carried out an empirical analysis on the model that compute the population's psychological and emotional conditions. During the analysis, the psychological simplification scale algorithm was adopted and multiple theories were taken into account. Then, we collected negative comments and expressions about Japan's discharge of radioactive water in microblog and compared them with the trend derived by the model. The results were consistent. Therefore, this research model has achieved good results in the emotion classification of microblog comments.