• 제목/요약/키워드: Pseudomonas sturzeri

검색결과 2건 처리시간 0.015초

생물방제균 Pseudomonas stutzeri YPL-1의 형질전환 조건 (Transformation of Antagonistic Pseudomonas stutzeri YPL-1 against Root Rotting Fungi Fusarium solani by Plasmid DNA)

  • 김용수;김상달
    • 한국미생물·생명공학회지
    • /
    • 제18권5호
    • /
    • pp.454-459
    • /
    • 1990
  • 식물근부균 Fusarium solani의 생육을 강력히 길항하는 생물방제균 Pseudomonas stutzeri YPL-1에 외부유전자 도입을 통한 유전공학적 육종방법의 기초를 확립하고자 하였다. 이를 위해 plasmid pKT230을 vector로 하여 형질전환의 가능성을 조사하였으며 이때, 혈질전환에 필요한 최적조건을 조사한 결과 P.stutzeri YPL-1의 형질전환에는 대수증식기 초기의 균체가 가장 적합하였고, 20mM RbCl과 100mM $CaCl_2$를 함유한 냉각용액에 1${\mu}g$/ml의 plasmid DNA를 첨가하였을 때 최대의 형질전환 빈도를 나타내었다. 또한 plasmid DNA와 competent cell를 혼합한 후 $0^{\circ}C$에서 60분간 처리하는 것이 가장 효과적이었으며 이와 같은 조건에서 형질전환 빈도는 2~$6 \times 10^{-6}$으로 나타났다.

  • PDF

Aerobic Degradation of Tetrachloroethylene(PCE) by Pseudomonas stutzeri OX1

  • Ryoo, Doohyun;Shim, Hojae;Barbieri, Paola;Wood, Thomas K.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.207-208
    • /
    • 2000
  • Since trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) arise from anaerobic degradation of tetrachloroethylene (PCE) and TCE, there is interest in creating aerobic remediation systems that avoid the highly toxic VC and cis-DCE which predonominate in anaerobic degradation. However, it seemed TCE could not be degraded aerobically without an inducing compound (which also competitively inhibits TCE degradation). It has been shown that TCE induces expression of both the toluene dioxygenase of p. putida F1 as well as toluene-p-monooxygenase of P.mendocina KRI. We investigated here the ability of PCE, TCE, and chlorinated phenols to induce toluene-o-xylene monooxygenase (ToMO) from P.stutzeri OX1. ToMO has a relaxed regio-specificity since it hydroxylates toluene in the ortho, meta, and para positions; it also has a broad substrate range as it oxidizes o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene, styrene, and naphthalene; chlorinated compounds including TCE, 1, 1-DCE, cis-DCE, trans-DCE, VC, and chloroform : as well as mixtures of chlorinated aliphatics (Pseudomonas 1999 Maui Meeting). ToMO is a multicomponent enzyme with greatest similarity to the aromatic monooxygenases of Burkholderia pickettii PKO1 and P.mendocina KR1. Using P.sturzeri OX1, it was found that PCE induces P.mendocina KR1 Using P.situtzeri OX1, it was found that PCE induces ToMO activity measured as naphthalene oxygenase activity 2.5-fold, TCE induces 2.3-fold, and toluene induces 3.0 fold. With the mutant P.stutzeri M1 which does not express ToMO, it was also found there was no naphthalene oxygenate activity induced by PCE and TCE; hence, PCE and TCE induce the tow path. Using P.putida PaW340(pPP4062, pFP3028) which has the tow promoter fused to the reporter catechol-2, 3-dioxygenase and the regulator gene touR, it was determined that the tow promoter was induced 5.7-, 7.1-, and 5.2-fold for 2-, 3-, 4-chlorophenol, respectively (cf. 8.9-fold induction with o-cresol) : however, TCE and PCE did not directly induce the tou path. Gas chromatography and chloride ion analysis also showed that TCE induced ToMO expression in P.stutzeri OX1 and was degraded and mineralized. This is the first report of significant PCE induction of any enzyme as well as the first report of chlorinated compound induction of the tou operon. The results indicate TCE and chlorinated phenols can be degraded by P.stutzeri OX1 without a separate inducer of the tou pathway and without competitive inhibition.

  • PDF