• Title/Summary/Keyword: Pseudomonas sp. P2

Search Result 264, Processing Time 0.033 seconds

Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli from Sucrose (재조합 대장균에서 수크로즈로부터의 젖산을 모노머로 함유한 폴리하이드록시알칸산 생산 연구)

  • Oh, Young Hoon;Kang, Kyoung-Hee;Shin, Jihoon;Song, Bong Keun;Lee, Seung Hwan;Lee, Sang Yup;Park, Si Jae
    • KSBB Journal
    • /
    • v.29 no.6
    • /
    • pp.443-447
    • /
    • 2014
  • Biosynthesis of lactate-containing polyhydroxyalkanoates (PHAs) was examined in recombinant Escherichia coli W strain from sucrose. The Pseudomonas sp. MBEL 6-19 phaC1437 gene and the Clostridium propionicum pct540 gene, which encode engineered Pseudomonas sp. MBEL 6-19 PHA synthase 1 ($PhaC1_{Ps6-19}$) and engineered C. propionicum propionyl-CoA transferase ($Pct_{Cp}$), respectively, were expressed in E. coli W to construct key metabolic pathway to produce poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)]. The recombinant E. coli W expressing the phaC1437 gene and the pct540 gene could synthesize P(3HB-co-13mol%LA) up to the polymer content of 31.3 wt% when it was cultured in chemically defined MR medium containing 20 g/L of sucrose and 2 g/L of sodium 3-hydroxybutyrate. When Ralstonia eutropha phaAB genes were additionally expressed to provide 3-hydroxybutyrate-CoA (3HB-CoA) from sucrose, P(3HB-co-16mol%LA) could be synthesized from sucrose as a sole carbon source without supplement of sodium 3-hydroxybutyrate in culture medium, but the PHA content was decreased to 12.2 wt%. The molecular weight of P(3HB-co-16 mol%LA) synthesized in E. coli W using sucrose as carbon source were $1.53{\times}10^4$ ($M_n$) and $2.78{\times}10^4$ ($M_w$), respectively, which are not different from those that have previously been reported by other recombinant E. coli strains. Engineered E. coli strains developed in this study should be useful for the production of lactate-containing PHAs from sucrose, one of the most abundant and least expensive carbon sources.

Effects of Environmental Factors on Degradation of Aroclors by Gram-negative Bacteria (Gram 음성세균에 의한 Aroclor 분해에 미치는 환경요소의 영향)

  • 김치경;김문식
    • Korean Journal of Microbiology
    • /
    • v.28 no.2
    • /
    • pp.145-150
    • /
    • 1990
  • The effects of environmental factors on degradation of Aroclor 1242 were investigated with four Gram-negative bacterial isolates. Their biodegradabilities of the Aroclor were well correlated to their growth rates on the Aroclor added as a sole carbon and energy source. The optimum concentration of the Aroclor for biodegradation of the substrate in MM2 medium was 0.5mg/ml in HK-100, HK-123, and MS-1003 strains, but 1 mg/ml in DJ-26 strain. The optimum temperature and pH were $30^{\circ}C$ and 7.0, respectively, for all the strains. On the basis of the results which the strain of DJ-26 showed the highest degradability of the Aroclor as well as the highest growth rate under the optimum environmental conditions, the bacterial isolate identified as Pseudomonas sp. was found to be a strain usable for treatment of the toxic and recalcitrant chemical pollutants, such as polychlorinated aromatic hydrocarbons.

  • PDF

AtERF11 is a positive regulator for disease resistance against a bacterial pathogen, Pseudomonas syringae, in Arabidopsis thaliana (애기장대 AtERF11 유전자에 의한 Pseudomonas syringae에 대한 병 저항성 유도)

  • Kwon, Tack-Min;Jung, Yun-Hui;Jeong, Soon-Jae;Yi, Young-Byung;Nam, Jae-Sung
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.235-240
    • /
    • 2007
  • AvrRpt2 protein triggers hypersensitive response (HR) and strong disease resistance when it is translocated from a bacterial pathogen Pseudomonas sp. to host plant cells containing a cognate RPS2 resistance protein through Type III Secretion System (TTSS). However, AvrRpt2 protein can function as the effector that suppresses a basal defense and enhances the disease symptom when functional RPS2 resistance protein is absent in the infected plant cells. Using Affymetrix Arabidopsis DNA chip, we found that many genes were specifically regulated by AvrRpt2 protein in the rps2 Arabidopsis mutant. Here, we showed that expression of AtERF11 that is known as a member of B1a subcluster of AP2/ERF transcription factor family was down regulated specifically by AvrRpt2. To determine its function in plant resistance, we also generated the Arabidopsis thaliana transgenic plants constitutively overexpressing AtERF11 under CaMV 355 promoter, which conferred an enhanced resistance against a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, these results collectively suggest that AtERF11 plays a role as a positive regulator for disease resistance against biotrophic bacterial pathogen in plant.

Characterization of TCE-Degrading Bacteria and Their Application to Wastewater Treatment

  • Lee, Wan-Seok;Park, Chan-Sun;Kim, Jang-Eok;Yoon, Byung-Dae;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.569-575
    • /
    • 2002
  • Two bacterial strains capable of degrading trichloroethylene (TCE), isolated form soils contaminated with various chlorinated alkenes, were identified as Alcaligenes odorous N6 and Nocardia sp. Hl7. In addition, four KCTC strains, including three strains of Pseudomonas putida and one strain of Sphingomonas chlorophenolica, exhibited an ability to degrade toluene. A. odorans N6 and Nocardia sp. H17 degraded 84% of the initial amount of TCE in a basal salts medium (BSM), containing 0.2 mM TCE as the sole source of carbon and energy, in a day. The optimal pH for growth was within a range of 7.0-8.0. A mixed culture of the four toluene-degrading isolates degraded 95% of 0.2 mM TCE with 1.5 mM toluene as an inducer, whereas no TCE was degraded by the same mixture without an inducer. When a mixed culture of all 6 isolates was used, the degradation efficiency of 0.2 mM TCE was 72% without an inducer, in a day, and 82% with toluene as an inducer. In a continuous treatment, 1,000 mg/1 of TCE in an artificial wastewater was completely removed within 18 h when an activated sludge was used along with the microbial mixture, which was 27 h laster than when only an activated sludge was used. Accordingly, it would appear that such a microbial mixture could be effectively applied to the biological treatment of wastewater containing TCE with or without an inducer.

Characterization of Antimicrobial Substance Produced by Lactobacillus sp. HN 235 Isolated from Pig Intestine (돼지 장관으로부터 분리한 Lactobacillus sp. HN 235 균주가 생산하는 항균물질의 특성)

  • Shin, Myeong-Su;Han, Sun-Kyung;Choi, Ji-Hyun;Ji, Ae-Ran;Kim, Kyeong-Su;Lee, Wan-Kyu
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • In order to develop probiotics which may be a viable alternative of antibiotic use in pig industry, five bacterial strains (Lactobacillus sp. HN 52, 92, 98, 235 and AP 116) possessing antimicrobial properties were selected from 500 strains isolates of pig intestines. The bacteriocin produced by Lactobacillus sp. HN 235 displayed a relative broad spectrum of inhibitory activity against all Enterococcus strains, Pseudomonas aeruginosa, Listeria monocytogenes and Clostridium perfringens using the spot-on-lawn method. The production of antimicrobial substance started in the middle of the exponential growth phase, reached maximum levels (6,400 AU/mL) in the stationary phase, and then declined. Bacteriocin activity remained unchanged after 30 min of heat treatment at $95^{\circ}C$ and stable from pH 2.0 to 10 for 1 h, or exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. The molecular weight of the bacteriocin was about 5 kDa according to a tricine SDS-PAGE analysis.

Proteolytic Yeasts Isolated from Mackerel (Scomber japonicus) (고등어에서 분리된 부패성 효모)

  • OH Eun-Gyong;PARK Mi-Yeon;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.471-476
    • /
    • 1998
  • Microbiological spoilage of marine fish is complex process occurring by bacteria, yeasts and molds. There have been rare study for saprophytic yeasts although having enormous numbers of bacteriological studies on the spoilage of marine fish. The 14 genera of yeasts isolated from mackerel (Scomber japonicus) with high frequency of occurrence were Candida sp., Rhodotorula sp., Torulopsis sp., Cryptotoccus sp. and Tricosporon sp. Among these ones Candida lipolytica was identified as the strongest proteolytic yeast, then named Candida lipolytica FM5 (C. lipolytica FM5). C. lipolytica FM5 showed optimum growth at $25^{\circ}C$, pH 7.0 and could grow at $5^{\circ}C$ and in medium containing $10\%$ sodium chloride, To evaluate the saprophytic activity of the selected strain, C, lipolytica FM5 and Pseudomonas fluorescens ATCC 17571 which is one of representative spoilage bacteria were individually inoculated into the sterilized fish muscle homogenates, and then pH changes and volatile basic nitrogen (VBN) values were checked during the storage at various temperatures. According to the experimental results, the productions of VBN by C. lipolytica FM5 in the fish muscle homogenates were 50 mg-N/100 g at $5^{\circ}C$, 152 mg-N/100 g at $15^{\circ}C$ and 379 mg-N/100 g at $25^{\circ}C$ for 1 week storage, respectively. Above results were nearly same as in case of Ps. fluorescens ATCC 17571 inoculation. It suggest that sapyophytic yeasts also have important role in spoilage of marine fish.

  • PDF

In-Vitro, Anti-Bacterial Activities of Aqueous Extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo Against Gram Positive and Gram Negative Bacteria

  • Dashtdar, Mehrab;Dashtdar, Mohammad Reza;Dashtdar, Babak;shirazi, Mohammad khabaz;Khan, Saeed Ahmad
    • Journal of Pharmacopuncture
    • /
    • v.16 no.2
    • /
    • pp.15-22
    • /
    • 2013
  • Objective: Evaluations of the in-vitro anti-bacterial activities of aqueous extracts of Acacia catechu (L.F.)Willd, Castanea sativa, Ephedra sinica stapf and Shilajita mumiyo against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) and gram-negative bacteria (Escherichia coli, klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa) are reasonable since these ethnomedicinal plants have been used in Persian folk medicine for treating skin diseases, venereal diseases, respiratory problems and nervous disorders for ages. Methods: The well diffusion method (KB testing) with a concentration of $250{\mu}g/disc$ was used for evaluating the minimal inhibitory concentrations (MIC). Maximum synergistic effects of different combinations of components were also observed. Results: A particular combination of Acacia catechu (L.F.) Willd, Castanea sativa, Ephedra sinica stapf and shilajita mumiyo extracts possesses an outstanding anti-bacterial activity. It's inhibiting effect on microorganisms is significant when compared to the control group (P<0.05). Staphylococcus aureus was the most sensitive microorganism. The highest anti-bacterial activity against gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumonia) or gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, Proteus mirabilis, and Pseudomonas aeruginosa) was exerted by formula number 2 (table 1). Conclusion: The results reveal the presence of anti-bacterial activities of Acacia catechu, Castanea sativa husk, Ephedra sp. and Mumiyo against gram-positive and gram-negative bacteria. Synergistic effects in a combined formula, especially in formula number 2 (ASLAN$^{(R)}$) can lead to potential sources of new antiseptic agents for treatment of acute or chronic skin ulcers. These results considering the significant anti-bacterial effect of the present formulation, support ethnopharmacological uses against diarrheal and venereal diseases and demonstrate use of these plants to treat infectious diseases.

Impacts of Chemical Properties on Microbial Population from Upland Soils in Gyeongnam Province (경남지역 밭 토양 화학성분이 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.242-247
    • /
    • 2011
  • Soil management for environment-friendly agriculture depends on the effects of soil microbial activities and soil fertility. To improve soil health for the upland crops, this study evaluated a relationship between soil chemical properties and soil microbial diversities at 25 sites in upland soils in Gyeongnam Province. The average nutrients in the upland soils were 1.7 times for available phosphorous, 1.4 times for exchangeable potassium and 1.5 times for exchangeable calcium higher compared to recommend concentrations in the upland soils. We found a significant positive correlation between the soil organic matter and the soil microbial biomass C (p<0.01). Contents of organic matter and dehydrogenase in the inclined piedmont soils were significantly higher than those in the other topographical soils (p<0.05). In addition, concentrations of organic matter and microbial biomass C in the loam soils were significantly higher than in the silt loam soils (p<0.05). In principal component analyses of chemical properties and microbial populations in the upland soils, our findings suggested that available phosphorous should be considered as potential factor responsible for the clear upland soils differentiation. The soil organic matter was positive correlation with Bacillus sp. and fungi, whereas soil pH was also positive correlation with Pseudomonas sp. in upland soils.

Versatile Catabolic Properties of Tn4371-encoded bph Pathway in Comamonas testosteroni (Formerly Pseudomonas sp.) NCIMB 10643

  • Kim, Jong-Soo;Kim, Ji-Hyun;Ryu, Eun-Kyeong;Kim, Jin-Kyoo;Kim, Chi-Kyung;Hwang, In-Gyu;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.302-311
    • /
    • 2004
  • Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643 can grow on biphenyl and alkylbenzenes $(C_2-C_7)$ via 3-substituted catechols. Thus, to identify the genes encoding the degradation, transposon-mutagenesis was carried out using pAG408, a promoter-probe mini-transposon with a green fluorescent protein (GFP), as a reporter. A mutant, NT-1, which was unable to grow on alkylbenzenes and biphenyl, accumulated catechols and exhibited an enhanced expression of GFP upon exposure to these substrates, indicating that the gfp had been inserted in a gene encoding a broad substrate range catechol 2,3-dioxygenase. The genes (2,826 bp) flanking the gfp cloned from an SphI-digested fragment contained three complete open reading frames that were designated bphCDorfl. The deduced amino acid sequences of bphCDorfl were identical to 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC), 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (BphD), and OrfI, respectively, that are all involved in the degradation of biphenyl/4-chlorobiphenyl (bph) by Ralstonia oxalatica A5. The deduced amino acid sequence of the orfl revealed a similarity to those of outer membrane proteins belonging to the OmpW family. The introduction of the bphCDorfl genes enabled the NT-l mutant to grow on aromatic hydrocarbons. In addition, PCR analysis indicated that the DNA sequence and gene organization of the bph operon were closely related to those in the bph operon from Tn4371 identified in strain A5. Furthermore, strain A5 was also able to grow on a similar set of alkylbenzenes as strain NCIMB 10643, demonstrating that, among the identified aromatic hydrocarbon degradation pathways, the bph degradation pathway related to Tn4371 was the most versatile in catabolizing a variety of aromatic hydrocarbons of mono- and bicyclic benzenes.

Response of Microbe to Chemical Properties from Orchard Soil in Gyeongnam Province (경남지역 과수원 토양 화학성분이 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.236-241
    • /
    • 2011
  • Soil microbial diversity was responsible for a strong effect on the chemical properties of orchard soils. This study evaluated a relationship between soil chemical properties and soil microbial diversities at 25 sites in orchard soils in Gyeongnam Province. The average nutrients in the orchard soils were 2.6 times for available phosphorous, 2.3 times for exchangeable potassium and 1.3 times for exchangeable calcium higher compared to recommend concentrations in the orchard soils. Contents of available phosphorous and organic matter in the inclined piedmont soils were higher than those in the other topographical soils (p<0.05). Populations of fungi and fluorescence Pseudomonas sp. in the silt loam soils were significantly higher than those in the sandy loam soils (p<0.05). In principal component analysis of chemical properties and microbial populations in the upland soils, our findings suggested that population of bacteria should be considered as potential factor responsible for the clear orchard soils differentiation. The soil organic matter was significantly negative correlation with population of bacteria whereas was positive correlation with population of fungi in orchard soils.