• Title/Summary/Keyword: Pseudomonas sp B3

Search Result 77, Processing Time 0.024 seconds

Occurrence and Biological Control of Postharvest Decay in Onion Caused by Fungi

  • Lee, Joon-Taek;Bae, Dong-Won;Park, Seun-Hee;Shim, Chang-Ki;Kwak, Youn-Sig;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.141-148
    • /
    • 2001
  • Postharvest decay of onion bulbs was examined by inspecting the commercial packages in the market or in storage. Bulb rot incidence was unexpectedly high, and onion bulbs with 1st quality grade were rotten most severely by 51%, followed by 32% for 2nd and 21% for 3rd grades. This indicates that larger bulbs had higher incidences of bulb rots. Major pathogens associated with basal and neck rots were Fusarium oxysporum and Aspergillus sp. or Botrytis allii, respectively, of which basal rot was most prevalent and damaging during storage. Among the epiphytic microorgani는 from onion plants, several Bacillus and Paenibacillus spp. and previously selected Pseudomonas putida and Trichoderma harzianum had inhibitory efficacy against bulb rot pathogens. Among these B. amyloliquefaciens BL-3, Paenibacillus polymyxa BL-4, and P. putida Cha 94 were highly inhibitory to conidial germination of F. oxysporum and B. allii. P. putida Cha 94, B. amyloliquefaciens BL-3, P. polymyxa BL-4, and T. harzianum TM were applied in the rhizoplane of onion at transplanting. Initially antagonist populations decreased rapidly during the first one month. However, among these antagonists, rhizoplane population densities of BL-3, Cha 94, and TM were consistently high thereafter, maintaining about 10$^4$-10$^{5}$ cells or spores per gram of onion root up to harvest time. The other bacterial antagonist BL-4 survived only for two months. TM was the most effective biocontrol agent against basal rot, with the number of rotten bulbs recorded at 4%, while that of the control was 16%. Cha 94 was effective for the first 20 days, but basal rot increased thereafter and had about the same control efficacy as that of BL-3 and BL-4. When the antagonists were applied to the topping areas of onion bulbs at harvest, TM was the most effective in protecting the stored onion bulbs from neck rotting. The second effective antagonist was BL-3. TM and BL-3 completely suppressed the neck rot in another test, suggesting that biocontrol of postharvest decay of onion using these microorganisms either at the time of transplanting or at harvesting may be promising.

  • PDF

Biological Control of Phytophthora Blight of Red-pepper Caused by Phytophthora capsici.;II. Isolation and Antifungal Activity of the Substances (고추역병균(疫病菌)(Phytophthora capsici)의 생물학적(生物學的) 방제(防除);II. 항균물질(抗菌物質)의 분리(分離) 정제(精製) 및 항균활성(抗菌活性))

  • Chang, Yoon-Hee;Chang, Sang-Moon;Choi, Jyung;Lee, Dong-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.399-405
    • /
    • 1996
  • In the culture medium, the three antifungal fractions against P. capsici were separated by Sephadex G-25 column chromatography and Silica-gel chromatography. The substance A in white powder and the substance B in sticky oil were isolated by ethyl acetate : acetone mixture(7 : 3), and the substance C in yellow powder was isolated by chloroform : ethyl acetate mixture(95 : 5). The crude extract by ethyl acetate from the culture medium acidified to pH 2 was known to inhibit completely the growth of P. capsici at the level of $50mgkg^{-1}$. The substance A and B were known to be effective above the level of $5mgkg^{-1}$, and the substance C was effective above the level of $1mgkg^{-1}$. However, at the level of $20mgkg^{-1}$, the efficiency was in the order of A>C>B. It is apparent on a pot-experiment scale that the three substances effectively control Phytophthora blight of the red-pepper plant grown in the soil inoculated with P. capsici.

  • PDF

Analysis of Bacterial Diversity in Fermented Skate Using Culture-dependent and Culture-independent Approaches (배양 의존적 및 배양 비의존적 방법에 의한 홍어회 서식 미생물의 다양성 분석)

  • Lee, Eun-Jung;Kim, Tae-Hyung;Kim, Ha-Kun;Lee, Jung-Kee;Kwak, Hahn-Shik;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.322-328
    • /
    • 2010
  • Fermented skate is a traditional Korean food popular in Southwestern area of Korea. It has a characteristic flavor and alkaline pH. In this study we tried to determine the microbial flora in fermented skate using two different approaches. In culture-independent method, we amplified V2 region of 16S rRNA gene by PCR and cloned them into pUC18 plasmid to construct 16S rDNA fragment library. BLAST searches for the sequences obtained from this library revealed that uncultured bacterium clone 054E11.b was the most dominant flora in this fermented fish. In culture-dependent method, we diluted suspension of skate and spreaded on MRS, PCA, and MacConkey plates. We identified colonies grown on those plates by using PCR amplification of V2 region of 16S rRNA and DNA sequencing. BLAST searches of those DNA sequences resulted in totally different species with the observations from the 16S rDNA library analysis. Discrepancies of results obtained from both approaches suggest that the agar plates used in culture-dependent method may be different from the real condition of fermented skate. Therefore, results from culture-independent approach using 16S rDNA fragment library analysis may reflect real microbial flora in fermented skate.

Collection of Soil Actinomycetes from Cheju Island and Screening for their Antibacterial Activities (제주도 토양방선균의 수집과 항균물질 생산균의 선별)

  • Chung, Wan-Seok;Kim, Chang-Jin;Ko, Young-Hwan
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.99-104
    • /
    • 1999
  • Soil actinomycetes of 703 strains were isolated from 25 sampling points in Cheju Island using 4 different media. Arginine glycerol salts agar containing soil extract was found to be the best medium for the isolation of soil actinomycetes. Soil samples from pasture land showed higher population and diversity of the actinomycetes than those from citrus field, forest, island, hill or valley. When the antibacterial activity of the 526 isolates was tested against three bacterial strains, Escherichia coli, Staphylococcus aureus and Pseudomonas solanacearum the frequency of the isolates with antibacterial activity varied much depending upon the media used for isolation and cultivation. BL106Ba, one of the 10 isolates that showed antibacterial activity against all the above 3 test strains, was chosen based upon the pH and heat stability of its antibacterial metabolites, and was identified as Streptomyces sp. based upon its cultural, morphological and physiological characteristics. The partially purified white crystalline substance obtained from the culture supematant of BL1063a through cation exchange chromatography(AG MP-50) and three times consecutive gel filtration(Sephadex G-10) showed high antimicrobial activity against gram positive and negative bacteria, but low activity against yeasts. The partially purified substance was found to contain at least four different compounds with antibacterial activity by both thin layer chromatography and high performance liquid chromatography.

  • PDF

Preparation of Aliphatic Polyester by Lipase Catalyzed Transesterificatoin in Anhydrous Organic Solvents (유기용매에서 Lipase에 의한 지방족 폴리에스터의 합성)

  • 박현규;장호남
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 1994
  • Enzyme-catalyzed polycondensatlon reaction of aliphatic polyesters with several repeating units was studied using the biocatalytic activities of lipases from different sources. Porcine pancreatic lipase (PPL) was found to be best in utilizing bls(2,2,2-trichloroethyl) glutarate and 1,4-butanediol as substrafes. The reaction was also catalyzed to some extent by the lipases from Humicola lanuginos and Psudomonas sp. In the series of short-chain diols(C2-C4), bis(2,2,2-trichloroethyl) glutarate was iransesterified fastest with 1,4-butanediol and for the long-chain diols (PEG-300-PEG-1000), the reaction was fastest with PEG-400. With PEGs, only monoesterification product was obtained. PPL functioned well in relatively hydrophilic organic solvents such as tetrahydrofuran(THF), ether and acetonitrile. The reaction rate was accelerated as the reaction temperature was raised from $20^{\circ}C$ to $60^{\circ}C$ while Mn values of the reaction products were not affected by the reaction temperature. End group analysis by NMR showed that Mn values of the polymer were in the range of 1500-4000 daltons.

  • PDF

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF

Antibacterial Activities of Trace Elements in Combination with Food Additives (미량원소 강화 식품소재의 항균효과)

  • Kim, Bo-Mi;Mok, Jong-Soo;Oh, Eun-Gyoung;Son, Kwang-Tae;Shim, Kil-Bo;Cho, Young-Je
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • Antibacterial activities of the trace elements in combination with the food additives were measured against 6 kinds of food-borne microorganisms such as Escherichia coli, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, Bacillus subtilis and Pseudomonas fluorescens. The difference of antibacterial activity was not shown among the kinds of food additives, such as dextrin, gelatin and collagen. Zn and Ge in combination with food additives had strong antibacterial effect. Especially, $1\%$ zinc acetate in combination with $1\%$ gelatin was more effective against P. fluorescens and S. aureus than against Bacillus sp., E. coli and V. parahaemolyticus. Minimum inhibitory concentration of zinc acetate in combination with $1\%$ gelatin appeared to be 0.5 mg/mL on S. aureus and P. fluorescens, and 1.0 mg/mL on E. coli, V. parahaemolyticus, B. cereus and B. subtilis. Minimum bactericidal concentration of zinc acetate in combination with $1\%$ gelatin appeared to be 0.5 mg/mL on P. fluorescens and 1.0 mg/mL on E. coli, V. parahaemolyticus, S. aureus, B. cereus and B. subtilis. The zinc acetate in combination with gelatin showed stronger inhibitory effect in acidic range below pH 6.0, and remained active even after heat treatment at $121^{\circ}C$ for 15 min. In comparison with control, the viable cell counts of fish pastes, which were coated with the solution containing both $1\%$ zinc acetate and $3\%$ gelatin, were decreased by more than 100-fold until the storage of 7 days at $10^{\circ}C$. The results indicate that the combined use of zinc acetate and some food additives could prolong the shelf life of fish pastes by 8 days or more at $10^{\circ}C$.