• 제목/요약/키워드: Pseudomonas putida 3SK

검색결과 4건 처리시간 0.016초

Degradation Properties of n-Alkane Assimilating Pseudomonas putida 3SK Carrying $CAM::TOL^{*}$ Plasmid and NAH Plasmid

  • Chun, Hyo-Kon;Cho, Kyung-Yun;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권4호
    • /
    • pp.270-273
    • /
    • 1994
  • Pseudomonas putida 3SK, which was constructed by the conjugal transfet of the $CAM::TOL^{*}$ plasmid of Pseudomonas putida CSnA and the NAH plasmid of Pseudomonas putida KCTC 2403 into n-alkane assimilating Pseudomonas putida KCTC 2405, showed a broad degradation spectrum and floc-forming ability. This strain degraded m-toluic acid, naphthalene, camphor and decane simultaneously. $Hg^{2+}$ at the concentration of 1 ppm in the minimal medium could not inhibit the growth of this strain. The degradation of m-toluic acid by Pseudomonas putida 3SK was not repressed by the easily utilizable compounds, such as glucose and succinate. But, the addition of formalin inhibited the growth of Pseudomonas putida 3SK. After the cultivation of this strain on the artificial wastewater containing m-toluic acid, naphthalene, camphor and decane for 24 hr, the initial COD value (1500) of the artificial wastewater was declined to 300.

  • PDF

방향족 탄화수소 분해 Plasmid의 n-Alkane 자화성 Pseudomonas putida에로의 전이 (Conjugal Transfer of NAH, TOL, and CAM::TOL* Plasmid into n-Alkane Assimilating Pseudomonas putida)

  • Kho, Yung-Hee;Chun, Hyo-Kon;Cho, Kyong-Yun;Bae, Kyung-Sook
    • 한국미생물·생명공학회지
    • /
    • 제17권1호
    • /
    • pp.51-55
    • /
    • 1989
  • TOL 플라스미드와 NAH 플라스미드는 n-알칸을 자화하는 P. putida KCTC 2405에 접합에 의해 각각의 이동은 가능하나 두 플라스미드는 불화합성에 기인하여 본 균주내에 공존할 수 없었다. TOL plasmid에서 불화합성 체계는 남겨두고 tol 유전자만 이 CAM plasmid내로 transposition 되어 형성된 CAM::TOL* 플라스미드는 NAH 플라스미드와 P. putida KCTC 2405에서 공존할 수 있어 m-toluate, naphthalene, camphor 및 n-alkane(C8-C24)를 분해할 수 있는 P. putida 3SK 균주를 육종하였다. CAM::TOL* 플라스미드는 선택성 배지에서 안정하였으나 비선택성 배지에서는 불안정하였다.

  • PDF

Characterization of the pcbD Gene Encoding 2-Hydroxy-6-Ox0-6-Phenylgexa-2,4-Dienoate Hydrolase from Pseudomonas sp. P20

  • Lim, Jong-Chul;Lee, Jeong-Rai;Lim, Jai-Yun;Min, Kyung-Rak;Kim, Chi-Kyung;Ki, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.258-263
    • /
    • 2000
  • 2-Hydroxy-6-oxo-6phenylhexa-2,4-dienoate (HOPDA) hydrolase catalyzes the hydrolytic cleavage of HOPDA to bemzpate and 2-hydroxypenta-2, 4-dienoate (HPD) during microbial catabolism of biphenyl and polychlorinated biphenyls. A HOPDA hydrolase gene (pcbD) was isolated from the genomic library of Pseudomonas sp. P20 and designated as pCNUO1201; a 7.5-kb XbaI DNA fragment from Pseudomonas sp. P20 was inserted into the pBluescript SK(+) XbaI site. E. coli HB101 harboring pCNU1201 exhibited HOPDA hydrolase activity. The open reading frame (ORF) corresponding to the pcbD gene consisted of 855 base pairs with an ATG initiation codon and a TGA termination codon. The ORF was preceded by a rebosome-binding sequence of 5'-TGGAGC-3' and its G+C content was 55 mol%. The pcbD gene of Pseudomonas sp. P20 was located immedeately downstream of the pcbC gene encoding 2,3- dihydroxybiphenyl 1,2-dioxygenase, and approximately 4-kb upstream of the pcbE gene encoding HPD hydratase. The pcbK gene was able to encode a polypeptide with a molecular weight of 31,732 containing 284 amino acid residues. The deduced amino acid sequence of the HOPDA hydrolase of Pseudomonas sp. P20 exhibited high identity (62%) with those of the HOPDA hydrolases of P. putida KF715, P. pseudoalcaligenes KF707, and Burkholderia cepacia LB400, and also significant homology with those of other hydrolytic enzymes including esterase, transferase, and peptidase.

  • PDF

Cloning and Expression of pcbC and pcbD Genes Responsible for 2,3-Dihydroxybiphenyl Degradation from Pseudomonas sp. P20

  • Nam, Jung-Hyun;Oh, Hee-Mock;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권2호
    • /
    • pp.68-73
    • /
    • 1995
  • Pseudomonas sp. P20 was shown to be capable of degrading biphenyl and 4-chlorobiphenyl (4CB) to produce the corresponding benzoic acids wnich were not further degraded. But the potential of the strain for biodegradation of 4CB was shown to be excellent. The pcbA, B, C and D genes responsible for the aromatic ring-cleavage of biphenyl and 4CB degradation were cloned from the chromosomal DNA of the strain. In this study, the pebC and D genes specifying degradation of 2, 3-dihydroxybiphenyl (2, 3-DHBP) produced from biphenyl by the pebAB-encoded enzymes were cloned by using pBluescript SK(+) as a vector. From the pCK102 (9.3 kb) containing pebC and D genes, pCK1022 inserted with a EcoRI-HindIII DNA fragment (4.1 kb) carrying pebC and D and a pCK1092 inserted with EcoRI-XbaI fragment (1.95 kb) carrying pebC were constructed. The expression of pcbC and D' in E. coli CK102 and pebC in E. coli CK1092 was examined by gas chromatography and UV-vis spectrophotometry. 2.3-dihydroxybiphenyl was readily degraded to produce meta-cleavage product (MCP) by E. coli CK102 after incubation for 10 min, and then only benzoic acid(BA) was detected in the 24-h old culture. The MCP was detected in E. coli CK1022 containing pebC and 0 genes (by the resting cells assay) for up to 3 h after incubation and then diminished completely in 8 h, whereas the MCP accumulated in the E. coli CK1092 culture even after 6 h of incubation. The 2, 3-DHBP dioxygenases (product of pebC gene) produced by E. coli CK1, CK102, CK1023, and CK1092 strains were measured by native PAGE analysis to be about 250 kDa in molecular weight, which were about same as those of Pseudomonas sp. DJ-12, P. pseudoa1caligenes KF707, and P. putida OU83.

  • PDF