• Title/Summary/Keyword: Pseudomonas fluorescens

Search Result 250, Processing Time 0.034 seconds

$Pyoverdin_{2112}$ of Pseudomonas fluorescens 2112 Inhibits Phytophthora capsici, a Red-Pepper Blight-Causing Fungus

  • Kim, Sang-Dal;Lee, Eun-Tag;Lim, Si-Kyu;Nam, Doo-Hyun;Khang, Yong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.415-421
    • /
    • 2003
  • A bacterium, Pseudomonas fluorescens 2112, that is antagonistic against a red-pepper blight-causing fungus, Phytophthora capsici, was isolated from the local soil of Gyongju, Korea. This strain formed an orange-colored clear halo zone on chrome azurol S (CAS) blue agar, suggesting the production of a siderophore in addition to an antifungal antibiotic. The optimal culture conditions for siderophore production by P. fluorescens 2112 were 30-h cultivation at $25^{\circ}C$ and pH 6.5 in King's B medium. The presence of $20{\mu}g/ml\;of\;Fe^3+$ ion or EDDHA promoted the production of siderophore in King's B medium. The siderophore was purified from culture broth by CM-Sephadex C-25 and Sephadex G-25 column chromatographies. The UV spectra of the purified siderophore was the same as that of pyoverdins or pseudobactins. The molecular mass was 1,958 Da determined by FAB-rlass spectrometer, and the amino acid composition analysis showed that the purified siderophore consisted of glycine/threonine/serine/glutamic acid/alanine/lysine with the molar ratio of 3:2:1:1:1:1, DL-Threo-${\beta}$-hydroxyaspartic acid and $N^{\delta}$-hydroxyornithine, two of the essential constituents of pyoverdin, were also found. The purified siderophore pyoverdin showed strong in vitro and in vivo antagonistic activities against phytophthora blight-causing P. capsici. Especially in an in vivo pot test, the siderophore protected red-pepper Capsicum annum L. very well from the attack of P. capsici. These results indicated that the purified siderophore of P. fluorescens 2112 played a critical role in the biocontrol of the red-pepper blight disease, equivalent to treatment by P.fluorescens 2112 cells.

Nitrate Removal by Pseudomonas fluorescens K4 Isolated from a Municipal Sewage Treatment Plant

  • Lee, O-Mi;Oh, Jong-Hyeok;Hwang, Doo-Seong;Choi, Yun-Dong;Chung, Un-Soo;Park, Jin-Ho;Kim, Min-Ju;Jeong, Seong-Yun;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1219-1223
    • /
    • 2007
  • The removal of nitrogen compounds from a wastewater is essential and it is often accomplished by bio-logical process. An aerobic nitrate-removing bacterium was isolated from a municipal sewage treatment plant and soil. On the basis of its morphological, cultural and physiological characteristics and 16S rRNA sequencing data, this strain was identified as Pseudomonas fluorescens, and named as P. fluorescens K4. The optimal conditions of the initial pH and temperature of media for its growth were $7.0{\sim}8.0$ and $30^{\circ}C$, respectively. P. fluorescens K4 was able to remove 99.9% of nitrate after 24 h in a culture. The strain could grow with a nitrate concentration up to 800 mg/l and was able to remove 99.9% of nitrate after 104 h of incubation. The optimal electron donor was sodium citrate for a nitrate removal. The strain K4 showed a capability of a complete nitrate removal when the initial C/N ratio was 1.0. An effect of the initial seed concentration was observed for a cell of 10% (v/v) for a nitrate removal. Especially P. fluorescens K4 could completely remove 200 mg/l ammonium for 3 days.

Antifungal Activity of Root Colonizing Pseudomonas fluorescens MC07 is Responsible for Its Disease Suppression Ability (근권 정창 세균 Pseudomonas fluorescens MC07의 항진균 활성과 병 억제 능력)

  • 김진우;박병근;황인규;박창석
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.606-611
    • /
    • 1998
  • An antagonistic bacterium, Pseudomonas flurorescens MC07 inhibited the mycelial growth of Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum, and Phytophthora capsici in on potato dextrose agan (PDA) and other media. The strain MC07 conlonizes various plant roots and possesses antifungal activity. To determine the role of antifungal activity of the bacterium in disease suppression, a mutant Okm3-4 which lost its activity was isolated after screening 2,500 colonies generated by Omegon-Km insertions. The mutant Okm3-4 showed diminished growth inhibition of R. solani, P. ultimum, F. oxysporum, and Ph. capsici in vitro and had reduced suppressive effects on sesame damping.-off compared to the parental strain. In soils, accumulation of the pathogens by continuous cropping, 90% of sesame plants were killed by natural infection of damping-off whereas, only 29% of plants grown from seeds treated with MC07 were killed. On the other hand, 85% of plants died when sesame seeds were treated with the Okm3-4 cells. This indicated that antifungal activity of MC07 in vitro is directly responsible for the suppression of damping-off disease. Emergence rates of sesame seeds in pots containing diseased soil were 33%. However, MC07 treatments on seeds significantly improved emergence rates, which has similar effects of Benomyl treatment. The mutant Okm3-4 exhibited 53% of emergence rate. This indicated that antifungal activity of MC07 also affects the emergence rate of sesame seeds.

  • PDF

Toxic effects of furfural on Pseudomonas fluorescens (Pseudomonas fluorescens에 대한 furfural의 독성효과에 관하여)

  • 김태용;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.21 no.3
    • /
    • pp.149-155
    • /
    • 1983
  • Pseudomonas fluorescens, which had been known to be unable to degrade furfural, could utilize 0.03% of furfural as a sole carbon source in a culture with forced aeration. Lag period of this strain was lengthened by low concentration of furfural and growth yield reduced. High concentration of furfural over 0.1% showed killing effect on this strain. Cells of higher metabolic activity and of earlier growth stage were affected more seriously. The fact that even 0.05% of furfural showed no inhibition on respiration of this strain was confirmed with data on respiration rate in Warburg manometr. From these results, it was suggested that furfural show no inhibitory effect on external respination activities of P.fluorescens.

  • PDF

Isolation and Characterization of Tn5 Insertion Mutants of Pseudomonas fluorescens Antagonistic to Rhizoctonia solani (Rhizoctonia solani 길항세균 Pseudomonas fluorescens의 Tn5 삽입 돌연변이주 분리 및 특성)

  • 박서기;박기범;김기청
    • Korean Journal Plant Pathology
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 1994
  • Pseudomonas fluorescens Biovar III strains S-2 antagonistic to Rhizoctonia solani was subjected to Tn5 mutagenesis by the transposon vector pGS9. Ampicillin and kanamycin resistant (Ampr, Kmr) transconjugants were recovered at a frequency of 1.3$\times$10-7 per initial recipient cell, when recipient cells were washed twice in TE buffer before conjugation. Of the ca. 3000 transconjugants, a frequency of noninhibitory (Inh-), nonfluorescent (Flu-) and auxotorphic (Pro-) mutants were 0.27%, 0.47% and 0.40%, respectively. In these mutants, all Inh- mutants showed the same colony morphology as wild type, whereas all Flu- and Pro- mutants inhibited the growth of R. solani. These mutants were also susceptible to chloramphenicol, indicating only the Tn5 element, except for parts of pGS9, was integrated into the recipient genome. In a Southern blot analysis, the Tn5 element inserted into one site on the chromosome for each of the chosen mutants. However, Tn5 insertion sites of Inh-, and Pro- mutants were differed in each other. These indicate that the genes essential for R. solani inhibition, fluorescent production and auxotrophic are chromosomally located, but not linked to each other.

  • PDF

Screening of Salicylic acid Producing Rhizobacteria Isolated from Plant Roots and Rhizosphere (식물의 뿌리와 근권으로부터 Salicylic acid를 생성하는 근권세균의 검색)

  • 이민웅
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.598-602
    • /
    • 1998
  • Twenty two rhizobacteria were isolated from the roots and rhizosphere of radish, carnation, potato and tomato. There isolates produced a fluorescent pigment in King's B medium and identified as Pseudomonas spp. These isolates colonized roots and rhizosphere of the host plants. In the study of cultural characteristics of the bacteria, the pH of the culture broth was changed from neutral (7.0) to alkali (8.8∼9.41) and the numbers of cells were increased from 106 to 108 after 40 hr of incubation in basal standard succinate medium. The salicylic acid production identified by pink color reaction were observed in 7 bacteria. Out of these 7 salicylic acid producing bacteria, only 2 strains of bacteria such as Pseudomonas fluorescens RS006, and Pseudomonas sp. EN401 were confirmed as salicylic acid producers by optical density measurement. Therefore, for screening of salicylic acid producing bacteria from the roots and rhizosphere, color reaction of the culture medium should be done in the first step, and then optical density measurement of culture extract should be made for the confirmation of salicylic acid production.

  • PDF

Purification and Characterization of the Regulatory Substance of Furfural Biodegradation in Pseudomonas fluorescens (Pseudomonas fluorescens에 의한 Furfural의 분해대사 조절물질에 관하여)

  • 이병웅;유병설;이계준;하영칠
    • Korean Journal of Microbiology
    • /
    • v.23 no.4
    • /
    • pp.241-247
    • /
    • 1985
  • The objectives of this study were to isolate and identify ninhydrin positive substande(s) produced in the culture broth of Pseudomonas fluorescens. It was found that the NPS could stimulate bioconversion of furfural into furoic acid. In order to isolate the NPS from the culture broth, cell free filtrate was subjected to ion-exchange chromatography, gel-permeation and finally to cellulose column chromatography. The purified NPS was white amorphous power and very soluble in water, slightly soluble in methanol and very insoluble in organic solvents. UV, and IR absorption spectra. $^H$ and $^{13}C-NMR$ were measured in order to identify the chemical structure of the NPS.

  • PDF

Isolation and Utilization of Antagonistic Pseudomonas fluorescens from Soils for the Protection of Soybean Sprouts Rot (콩나물 부패병 방제를 위해 토양으로부터 분리한 길항균 Pseudomonas fluorescens의 이용)

  • Kim, Jin-Ho;Joo, Gil-Jae;Choi, Yong-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 2001
  • Thirty-three bacterial and fungal strains were isolated from the rotten soybeans and soybean sprouts to isolate pathogenic microorganisms which cause soybean sprouts rot during soybean sprouts cultivation. In pathogenicity tests of the isolates on soybean sprouts, two isolates(K-17 and K-28) caused soybean sprouts rot and were identified as Erwinia carotovora and Fusarium sp., respectively. To isolate antagonists aganist K-17 and K-28 pathogens, bacteria were isolated from various soybean-cultivated soils and screened by the inhibition zone method. A bacterial isolate(J-232) which inhibited growth of both pathogens was identified as Pseudomonas fluorescens and further examined. The culture filtrate of P. fluorescens J-232 (dilution rate of 500 times) inhibited the growth of Erwinia carotovora K-17 and Fusarium sp. K-28 both on potato dextrose agar medium and on soybean sprouts cultivated in vessel. The development of soybean sprouts rots was observed during cultivation by inoculation of soybean seeds with culture filtrate of both pathogens. The combined inoculation of soybean seeds with culture filtrate of antagonistic bacterium and that of pathogens prevented soybean sprouts rot, and the growth of soybean sprouts was similar to that of control. The soybean sprouts inoculated with antagonists culture filtrate alone did not develop soybean sprouts rot, and the growth of the seedlings was shown to be slightly promoted as compared with that of control.

  • PDF

Role of Siderophores in Biocontrol of Fusarium solani and Enhanced Growth Response of Bean by Pseudomonas fluorescens GL20

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.13-20
    • /
    • 1997
  • Plant growth-promoting Psudomonas fluorescens GL20 was isolated from a ginseng rhizosphere on chrome azurol Sagar. P. fluorescens GL20 produced a large amount of hydoxamate siderophore in an iron-deficient medium. The siderophore showed significantly high specific activity of 20.2 unit. Using an in vitro antifungal test, P. fluorescens GL20 considerably suppressed growth of phytopathogenic fungus Fusarium solani, inhibiting spore germination and germ tube elongation. In pot trials of kidney beans with P. fluorescens GL20, disease incidence was remarkably reduced up to $68{\%}$ compared with that of F. solani alone, and plant growth was also increased nearly 1.6 fold as compared to that of the untreated control, promoting elongation and development of the roots. These results indicate that the plant growth-promoting activity of P. fluorescens GL20 can play an important role in biological control of soil-borne plant disease in a rhizosphere, enhancing the growth of plants.

  • PDF