• Title/Summary/Keyword: Pseudomonas aeruginosa EMS1

Search Result 5, Processing Time 0.019 seconds

Production of Biosurfactant by Pseudomonas aeruginosa EMS1 from Soybean Oil and Whey

  • Cha, Mi-Sun;Kim, Min-Joo;Lee, Kyung-Min;Son, Hong-Joo;Park, Eun-Hee;Lee, Sang-Joon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_1
    • /
    • pp.41-45
    • /
    • 2001
  • Pseudomonas aeruginosa EMS1, isolated from activated sludge, was able to grow an produce a biosurfactant on 4.5 % soybean oil, used as the source of energy and carbon. Pseudomonas aeruginosa EMS1 was cultivated at 3$0^{\circ}C$ in a reciprocal shaking incubator, and the highest biosurfactant production was observed after 3 days. Furthermore, Pseudomonas aeruginosa EMS1 was also able to use whey as a co-substrate for biosurfactant production and growth

  • PDF

Gene Cloning and Partial Sequencing of Pseudomonas aeruginosa EMSI and KH7 rhamonolipid gene

  • 이근희;손명화;차미선;이상준
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2002.05b
    • /
    • pp.445-447
    • /
    • 2002
  • 본 연구는 환경친화적인 biosurfactant를 생산하는 Pseudomonas aeruginosa EMS1 and KH7를 rhamnolipid의 rhlR, rhlA, rhlB를 기초로한 primer를 이용하여 752bp, 802pb, 1280bp pcr을 수행하였으며 $pGEM^{(R)}$ / - T Easy Vector gene cloning 하여 Pseudomonas aeruginosa EMS1 and KH7의 Partial Sequencing를 서로 비교하였다. 이들 실험을 통하여 Pseudomonas aeruginosa의 유전적 구조 및 특성을 비교하여 유전적 조작을 위한 기초적인 자료가 되도록 한다.

  • PDF

Selection and Characterization of Pseudomonas aeruginosa EMS1 Mutant strain Showing Enhanced Biosurfactant Production

  • Cha, Mi-Sun;Lee, Kuen-Hee;Lee, Na-Eun;Lee, Sang-Joon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.434-437
    • /
    • 2003
  • A new bacterial strain, was isolated from activated sludge, identified and named P. aeruginosa EMS1. The new strain produced surface-active rhamnolipids by batch cultivation in mineral salts medium with waste flying oils. The mutant strain KH7, designated P. aeruginosa EMS1, derived by random mutagenesis with N-methyl-N-nitro-N-nitrosogoanidine treatment producing high levels of the biosurfactants was selected by an ion-pair plate assay. The mutant strain KH7 showed 4-5 times more hydrocarbon emulsification as compared to the parent when grown on waste frying oils and various hydrocarbons. Furthermore, P. aeruginosa EMS1 and mutant strain KH7 was also able to use whey as a co-substrate for growth and biosurfactant production. As results of this study, mutant strain KH7 is a very efficient biosurfactant producer, and its culture conditions are relatively inexpensive and economical. Rhamnolipid is synthesized by the rhlAB-encoded rhamnosyltransferase. To be convinced of these genes, we performed PCR based on P. aeruginosa PAO1 whole-genome database. rhl gene cluster nucleotide and amino acid sequences were compared for both parent and mutant. Comparison of nucleotide sequence of rhlAB, there were usually terminal's codons exchange.

  • PDF

Biological Treatment on Wastewater of Soluble Metal Working Fluids (수용성 금속가공유 폐액의 생물학적 처리)

  • 차미선;한창민;박근태;조순자;손홍주;이상준
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.917-923
    • /
    • 2003
  • The present investigation was conducted to determine the chemical oxygen demand (COD) removal efficiency by Pseudomonas aeruginosa EMS1. The COD removal efficiency in the medium containing 1% metal working fluid (MWF) was 12% after cultivation of 4 days. The composition of optimum medium for the COD removal efficiency of 1% MWF by P. aeruginosa EMS1 were NH$_4$Cl 0.3%,$ K_2HPO_4\; 0.05%,\; KH_2PO_4\; 0.04%,\; MgSO_4.7H_2O\; 0.05%,\; CaCl_2.2H_2O 0.03%$ and $FeSO_4.7H_2O$ 0.04% at initial pH 7.0 and $30^{\circ}C$. Under this condition, the highest the COD removal efficiency was observed after 4 days.

The development of high functioning biosurfactant treated with various mutagenesis

  • 이근희;차미선;한창민;조순자;손홍주;박연규;이상준
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.168-170
    • /
    • 2001
  • 생물 계면활성제의 개발을 위해 MNNG(N-Methyl-N-Nitro- Nitrosoguanidine), EMS, UV radiator random mutation을 통해 가장 우수한 biosurfactant 생산 균주를 선별하였는데 MNNG를 처리한 균주가 유화활성 1.950, 표면장력 29.0dyne/cm으로 공시균주인 Pseudomonas aeruginosa EL-MS 유화활성 0.456과 표면장력 33.0dyne/cm에 비해 우수하였다.

  • PDF