• 제목/요약/키워드: Pseudocercospora fuligena

검색결과 4건 처리시간 0.021초

Pseudocercospora fuligena에 의한 토마토 검은잎곰팡이병 (Black Leaf Mold of Tomato Caused by Pseudocercospora fuligena in Korea)

  • 이문행;이석수;김홍기;이윤수;이지혜;유승헌
    • 식물병연구
    • /
    • 제18권3호
    • /
    • pp.255-258
    • /
    • 2012
  • 2011년 9월, 충남 보령시와 부여군의 시설재배단지에서 재배중인 토마토의 잎에 Pseudocercospora fuligena에 의한 검은잎곰팡이병이 발생하였다. 이 병의 병징은 초기에는 잎에 연한 노란색의 불규칙한 점무늬가 발생하며, 점차 연한 갈색으로 변하고 잎 뒷면의 병반부위에 병원균의 분생포자를 다량으로 형성하면서 검은색의 그을음 병징을 나타내었다. 병든 토마토 식물체로부터 원인균을 분리하였고 현미경 검경을 통하여 형태적 특징을 분석한 결과 P. fuligena로 동정되었다. 온실조건에서 인공접종을 통하여 이 균의 병원성을 증명하였다. P. fuligena에 의한 토마토 검은잎곰팡이병의 발생은 우리나라에서 최초의 보고이다.

Light and Electron Microscopy Studies Elucidating Mechanisms of Tomato Leaf Infection by Pseudocercospora fuligena

  • Zelalem Mersha;Girma Birru;Bernhard Hau
    • The Plant Pathology Journal
    • /
    • 제39권2호
    • /
    • pp.181-190
    • /
    • 2023
  • The fungal pathogen Pseudocercospora fuligena, known to affect tomatoes in the tropics and subtropics, has been reported from temperate climates including the United States and Turkey in recent years. In this study, an isolate from fresh tomatoes and the disease it causes were characterized and infection mechanisms investigated. Macroscopically, both sides of tomato leaves show indistinct effuse patches but prolific production of fuliginous lesions is conspicuous on the abaxial side first but also on the adaxial side later on as infection progressed. Microscopically, fascicles of conidiophores (11-128 ㎛ × 3.5-9 ㎛) arising from stromata and conidia with up to 12 septations were observed. Molecular characterization of the isolate revealed high homology (99.8%) to other P. fuligena isolated from tomatoes in Turkey. Out of the 10 media tested, P. fuligena grew significantly well and sporulated better on unsealed tomato oatmeal agar and carrot leaf decoction agar, both supplemented with CaCO3. Direct transfer of conidia from profusely sporulating lesions was the easiest and quickest method of isolation for in-vitro studies. Light and scanning electron microscopy on cleared and intact tomato leaves further confirmed stomatal penetration and egress as well as prevalence of primary and secondary infection hyphae. In situ, blocked stomatal aperture areas of 154, 401, and 2,043 ㎛2 were recorded at 7, 12, and 17 days after inoculation, respectively. With the recent expanded horizon of the pathosystem and its consequential impact, such studies will be useful for a proper diagnosis, identification and management of the disease on tomato worldwide.

Survey and Screening of Fungicide for the Control of Tomato Black Leaf Mold Pseudocercospora fuligena

  • Lee, Mun Haeng;Lee, Hee Keyung;Cho, Pyeng Hwa;Kim, Young Shik;Cho, Suk Keyung;Kim, Sung Eun;Chun, Hee;Kim, Hong Gi;Kim, Sang Woo;Lee, Youn Su
    • 식물병연구
    • /
    • 제21권2호
    • /
    • pp.94-98
    • /
    • 2015
  • Tomato black leaf molds were collected from the six metropolitan cities, which were occurred mainly from the end of August until November. There was no significant difference on the fungal growth between potato dextrose agar and tomato-oatmeal agar media. The mycelial growth of the fungus was robust at a relatively high temperature, from 28 to $30^{\circ}C$. The suppression rates of hyphal growth ranged from 17-98% on the media supplemented with four different chemicals such as difenoconazole, fluquinconazole and prochloraz manganese complex, metconazole, and flutianil and there is no different suppression rates of the fungicides on the tested Pseudocercospora fuligena isolates.

Suppression of melon powdery mildew and tomato leaf mold disease by the antifungal activity of tea tree (Melaleuca alternifolia) essential oil

  • Lee, Mun Haeng;Oh, Sang-Keun
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.1071-1081
    • /
    • 2020
  • Essential oils (EOs) have been shown to be plant-extracted antimicrobial agents. However, there are limited studies investigating the efficacy of EOs against pathogens. Among them, tea tree oil (TTO) is extracted from Melaleuca alternifolia, which is also used as an antifungal agent. In this study, the effect of TTO was investigated on the suppression of melon powdery mildew caused by Podosphaera xanthii and tomato leaf mold disease caused by Passalora fulva. Both powdery mildew and leaf mold diseases were significantly suppressed by a spray of TTO. Eighty percent of powdery mildew and 81% of leaf mold disease of the control value were suppressed by 0.5% TTO liquid, when sprayed 3 times every 7 days on the melon and tomato leaves. Inhibition of mycelial growth was also greatly affected by different concentrations of TTO against four different fungal pathogens. Ninety-eight percent of Pseudocercospora fuligena, 97% of P. fulva, 95% of Botrytis cinerea, and 94% of Phytophthora infestans mycelial growth were inhibited by 0.2% to 1.0% of TTO contained in plate media, respectively. However, phytotoxicity in plants by the TTO treatments was revealed when melon and tomato leaves were sprayed with a 1% and 2% concentration of TTO, respectively. Therefore, our findings show that TTO has high antifungal effects against various plant pathogens that occur during crop cultivation. We also suggest that when applying TTO to plant leaves, it is necessary to establish an accurate treatment concentration for different crops.