Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.712-715
/
2023
딥러닝 기술의 발전은 고품질의 대규모 데이터에 크게 의존한다. 그러나, 데이터의 품질과 일관성을 유지하는 것은 상당한 비용과 시간이 소요된다. 이러한 문제를 해결하기 위해 최근 연구에서 최소한의 비용으로 최대의 성능을 추구하는 액티브 러닝(active learning) 기법이 주목받고 있는데, 액티브 러닝은 모델 관점에서 불확실성(uncertainty)이 높은 데이터들을 샘플링 하는데 중점을 둔다. 하지만, 레이블 생성에 있어서 여전히 많은 시간적, 자원적 비용이 불가피한 점을 고려할 때 보완이 불가피 하다. 본 논문에서는 의사-라벨링(pseudo labeling)을 활용한 준지도학습(semi-supervised learning) 방식과 학습 손실을 동시에 사용하여 모델의 불확실성(uncertainty)을 측정하는 방법론을 제안한다. 제안 방식은 레이블의 신뢰도(confidence)와 학습 손실의 최적화를 통해 비용 효율적인 데이터 레이블 생성 방식을 제안한다. 특히, 레이블 데이터의 품질(quality) 및 일관성(consistency) 측면에서 딥러닝 모델의 정확도 성능을 높임과 동시에 적은 데이터만으로도 효과적인 학습이 가능할 수 있는 메커니즘을 제안한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.248-251
/
2020
전 반도체 제조 및 검사 공정 과정을 자동화하는 스마트 팩토리의 실현에 있어 제품 검수를 위한 검사 장비는 필수적이다. 하지만 딥 러닝 모델 학습을 위한 데이터 처리 과정에서 엔지니어가 전체 웨이퍼 영상에 대하여 결함 항목 라벨을 매칭하는 것은 현실적으로 불가능하기 때문에 소량의 라벨 (labeled) 데이터와 나머지 라벨이 없는 (unlabeled) 데이터를 적절히 활용해야 한다. 또한, 웨이퍼 영상에서 결함이 발생하는 빈도가 결함 종류별로 크게 차이가 나기 때문에 빈도가 적은 (minor) 결함은 잡음처럼 취급되어 올바른 분류가 되지 않는다. 본 논문에서는 소량의 라벨 데이터와 대량의 라벨이 없는 데이터를 동시에 활용하면서 결함 사이의 발생 빈도 불균등 문제를 해결하는 점진적 데이터 평준화 (progressive pseudo-labeling balancer)를 제안한다. 점진적 데이터 평준화를 이용해 분류 네트워크를 학습시키는 경우, 기존의 테스트 정확도인 71.19%에서 6.07%-p 상승한 77.26%로 약 40%의 라벨 데이터가 추가된 것과 같은 성능을 보였다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.410-413
/
2023
레이블링 작업은 데이터 분석 시 필요한 사전 작업중 하나이다. 모든 데이터들에 대해 레이블링 작업은 시간/인적 자원을 필요로 하기에, 해당 작업을 보완할 방법이 존재한다면 요구되는 리소스를 줄여 효율성을 크게 향상시킬 수 있다. 본 논문에서는 통신회사에서 적재된 데이터 셋에 대하여 레이블이 없는 데이터(Unlabeled-data)에 대해 의사 레이블링(Pseudo-labeling), SMOTE 를 통한 데이터 증강을 활용하여 기존에 활용되지 못한 데이터를 추가하여 모델에 학습시킨다. 실험을 통해 의사 레이블을 통한 모델 학습 방법이 기존 도메인 지식의 레이블 방법보다 효율적이고 성능이 우수함을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.510-512
/
2023
In order to enhance a model's capability for detecting facial expressions, this research suggests a pipeline that makes use of the GradCAM component. The patching module and the pseudo-labeling module make up the pipeline. The patching component takes the original face image and divides it into four equal parts. These parts are then each input into a 2Dconvolutional layer to produce a feature vector. Each picture segment is assigned a weight token using GradCAM in the pseudo-labeling module, and this token is then merged with the feature vector using principal component analysis. A convolutional neural network based on transfer learning technique is then utilized to extract the deep features. This technique applied on a public dataset MMI and achieved a validation accuracy of 96.06% which is showing the effectiveness of our method.
To report problems found in a patient who has implemented stent implantation and then conducted a perfusion MRI using ASL(Arterial Spin Labeling), in order to suggest a solution to them. The perfusion MRI was conducted, using pCASL among ASL methods. Data from pCASL(Pseudo Continuous Arterial Spin Labeling) was acquired together with the structural image simply by changing position(labeling gap 15 mm, 170 mm) of the labeling pulse to avoid stent. Data was processed through the ASLtbx. When perfusion MRI was acquired using pCASL, it showed that the position of the conventional labeling pulse (labeling gap 24 mm) was overlapped with that of stent, which made signal intensity in right brain tissue appear as if it were void. When the labeling pulse was positioned (labeling gap 15 mm) to avoid stent, high signal intensity images were acquired. In labeling pulse (labeling gap 170 mm), the signal intensity was more reduced due to relaxation before labeled blood arrived at the imaging slice. pCASL can be stably repeated measurements because it does not use a contrast agent. And it should be selected with the appropriate image acquisition parameters for the high quality image.
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.4
/
pp.111-123
/
1996
In this paper, a new edge-based segmentation algorithm for range image using pseudo reflectance images (PRIs) is proposed. A model of pseudo reflectance which is useful in analyzing three dimensional scene and objects is introduced and then three PRIs are generated by the model. For generating three PRIs, bels and jain's differential window operator is selected and three different light source directions are determined. Three edge images are extracted from each PRI and a fused (logical ORing) edge image is constructed for the benefit of enhanced edge formation. The final segmentation results of the proposed algoritm are obtained after the processing of thinning, labeling and correcting erroeneous regions with the fused edge image. The good performance of edge detection and segmentation is confirmed via computer simulation with synthetic and real range images.
In this paper, we analysis the semi-supervised learning (SSL), which is adopted in order to train a deep learning-based classification model using the small number of labeled data. The conventional SSL techniques can be categorized into consistency regularization, entropy-based, and pseudo labeling. First, we describe the algorithm of each SSL technique. In the experimental results, we evaluate the classification accuracy of each SSL technique varying the number of labeled data. Finally, based on the experimental results, we describe the limitations of SSL technique, and suggest the research direction to improve the classification performance of SSL.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.205-209
/
2022
페르소나 대화 시스템이 상대방의 개인화된 정보에 일관된 응답을 생성하는 것은 상당히 중요하며, 이를 해결하기 위해 최근에 많은 연구들이 활발히 이루어지고 있다. 그 중, PersonaChat 데이터셋에 대해 수반/중립/모순 관계를 라벨링한 DialoguNLI 데이터셋이 제안되었으며, 일관성 측정, 페르소나 속성 추론 태스크 등 여러 분야에 활용되고 있다. 그러나, 공개적으로 이용가능한 한국어로 된 대화 추론 데이터셋은 없다. 본 연구에서는 한국어로 번역된 페르소나 대화 데이터셋과 한국어 자연어 추론 데이터셋에 학습된 모델을 이용하여 한국어 대화 추론 데이터셋(KorDialogueNLI)를 구축한다. 또한, 사전학습된 언어모델을 학습하여 한국어 대화 추론 모델 베이스라인도 구축한다. 실험을 통해 정확도 및 F1 점수 평가 지표에서 KLUE-RoBERTa 모델을 미세조정(fine-tuning)시킨 모델이 가장 높은 성능을 달성하였다. 코드 및 데이터셋은 https://github.com/passing2961/KorDialogueNLI에 공개한다.
Objective: To investigate the age-dependent changes in regional cerebral blood flow (CBF) in healthy adults by fitting mathematical models to imaging data. Materials and Methods: In this prospective study, 90 healthy adults underwent pseudo-continuous arterial spin labeling imaging of the brain. Regional CBF values were extracted from the arterial spin labeling images of each subject. Multivariable regression with the Akaike information criterion, link test, and F test (Ramsey's regression equation specification error test) was performed for 7 models in every brain region to determine the best mathematical model for fitting the relationship between CBF and age. Results: Of all 87 brain regions, 68 brain regions were best fitted by cubic models, 9 brain regions were best fitted by quadratic models, and 10 brain regions were best fitted by linear models. In most brain regions (global gray matter and the other 65 brain regions), CBF decreased nonlinearly with aging, and the rate of CBF reduction decreased with aging, gradually approaching 0 after approximately 60. CBF in some regions of the frontal, parietal, and occipital lobes increased nonlinearly with aging before age 30, approximately, and decreased nonlinearly with aging for the rest of life. Conclusion: In adults, the age-related perfusion patterns in most brain regions were best fitted by the cubic models, and age-dependent CBF changes were nonlinear.
Purpose : The purpose of this study was to describe arterial spin labeling MR image findings of status epilepticus. Materials and Methods: A retrospective chart review within our institute revealed six patients who had been clinically diagnosed as status epilepticus and had also undergone MR imaging that included ASL in addition to routine sequences. Results: Six patients with status epilepticus were studied by conventional MR and arterial spin labeling imaging. All patients showed increased regional CBF correlating with EEG pathology. Notably, in two patients, conventional MRI and DWI showed no abnormal findings whereas pCASL demonstrated regional increased CBF in both patients. Conclusion: Arterial spin labeling might offer additional diagnostic capabilities in the evaluation of patients with status epilepticus.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.