• Title/Summary/Keyword: Prototype and model concrete

Search Result 79, Processing Time 0.029 seconds

A Study on the Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement. (콘크리트 포장 축소모델 배합의 재료적 상사성에 관한 연구)

  • 배주성;고영주;김재경;김평수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.103-110
    • /
    • 1997
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate materials similitude between the prototype and the model concrete. Based on th results of experiments, We compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-strain curves of prototype concrete, it is important that various mix as of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

  • PDF

A Study on Manufacturing and Experimental Techniques for the 1/5th Scale Model of Precast Concrete Large Panel Structure (프리캐스트 콘크리트 대형판 구조물의 1/5 축소모델 제작 및 실험기법 연구)

  • 김상규;이한선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.198-203
    • /
    • 1995
  • The objective of this study is to provide the information on the techniques of manufacturing and experiment in small scale modeling of precast concrete(P.C.)large panel structures. The adopted scale was 1/5th 4types of experiments were performed : material tests for model concrete and model reinforcement, compressive test of horizontal joint, shear test of vertical joint and cyclic static test of 2-story subassemblage structure. Based on the experimental results, the following conclusions are drawn: (1)Model concrete may have in general larger compressive strength than expected. (2) Model reinforcement can show less ductility if the annealing processes were performed without using vaccuum tube. (3) Failure modes of horizontal and vertical joints were almost same for both prototype and model. But the strength of model appears to be higher than required by similitude law. (4)Hysteretic behavior of 1/5 scale subassemblage model can be made quite similar to prototype's if the ductility of model reinforcement and compressive strength of model concrete could be representative of those of prototype.

  • PDF

The Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement (시멘트콘크리트 포장체의 거동연구를 위한 축소모델 배합의 재료적 상사성)

  • Ko, Young-Zoo;Lee, Yeoung-Woo;Bae, Ju-Seong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.139-145
    • /
    • 1999
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate material similitude between the prototype and the model concrete. Based on the results of experiments, we compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-stain curves of prototype concrete, it is important that various mix proportions of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

Similitude in Flexural Bond Behavior of Small-Scale Reinforced Concrete Beams (축소모델 철근콘크리트 보의 휨부착거동에 있어서의 상사성)

  • 이한선;고동우
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.47-57
    • /
    • 1999
  • The small-scale models have been utilized for the prediction of inelastic behavior of reinforced concrete structures for several decades. The parameters that affect the similitude between the model and prototype are various. Among them, the effect of bond between the model reinforcement and the model concrete is one of the most important factors. The study reported herein is addressed to verifying this similitude in bond behavior. The simple beams which have the lap splice at the midspan were made and flexural tests were performed under two-point loading. The length of lap splice are varied from 0.4ld through 0.7ld and up to 1.0ld where ld is the development length of the reinforcement. The selected scales are 1/1, 1/5, 1/10 and 1/12. Two prototype specimens and three models were tested in addition to the associated material tests and the test results are compared from the viewpoint of similitude.

A Study on Manufacturing and Experimental Techniques for the 1/5th Scale Model of Precast Concrete Large Panel Structure (프리캐스트 콘크리트 대형판 구조물의 1/5축소모델 제작 및 실험기법 연구)

  • 이한선;김상규
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.139-150
    • /
    • 1996
  • The objective of this study is to provide the information on the manufacturing and exper- , ructures. imental techniques of small scale modeling of precast concrete(P.C.) large panel :-t The ad~~pted scale was one-fifth. 4 types of experiments were performed : nlaterial tests for model concrete and model reinforcement, compressive test of horizontal joint, shear test of vertical joint and cyclic static test of 2-story subassemblage structure. Based on the experimental results, the following conclusions are drawn : i 1) Model concrete had in general larger compressive strength than expected. (2) Model reinforcement showed less ductility if the annealing processes were performed without using vaccuum tube. 131 Failure niotles of horizontal and vertical joints were almost same for both prototype and model. But the strength of model appears to be higher than required by similitude law. (41 Hysteretic behavior of 1 /T, scale subassemblage model can be made quite similar to that of prototype if the ductility of model reinforcement and compressive strength of model concrete could be representative of those of prototype.

An Experimental Study on the Flexural Behavior of 1/10-Scale Reinforced Concrete Beams (1/10 축소 철근콘크리트보의 휨 거동에관한 실험적 연구)

  • 이한선;장신혁;김상규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.325-330
    • /
    • 1995
  • Three types of model concrete with different mix ratios for 1/10 scale reinforced concrete model were made and tested to find the best solution for the simulation of mechanical characteristics of prototype concrete. Scaled reinforcing materials in diameter(D1.8) having similar con-figuration and mechanical properties with commercial deformed bars(D19) were prepared for 1/10 scale model tests of reinforced concrete structures. Two types of model test using D1.8 model reinforcing bars and model concrete, monotonic simple beam test and cyclic cantilever beam test, were performed to ensure and check the similitude of bond behavior between 1/10 scale model and prototype. The test results showed that the flexural behavior of 1/10 scale models can be simulated with accuracy enough for practical use in monotonic and cyclic loading test.

  • PDF

Experimental Techniques of Small-Scale Models for Reinforced Concrete Structural Researches (철근콘크리트구조 연구를 위한 소축적 구조모형실험기법)

  • Kim, Woo;Kim, Dae-Joong;Kang, Sung-Hoo
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.133-142
    • /
    • 1991
  • When the behavior of a prototype concrete structure is studied through small-scale model experiments, it is necessary to reproduce all significant physical characteristics on either an one-to-one basis or a specific similitude relationship. Any distortion of similitude must be understood and its effect must be predictable. This paper focuses on improved physical modeling techniques for small-scale reinforced concrete structures. Particular emphasis is placed on the development of a model concrete mix to accurately model the important properties of full-scale prototype concrete. Four types of model reinforcement with different bond characteristics are also studied by testing twenty simple beams. The information obtained will be of immediate use to engineers contemplating small-scale modeling of reinforced concrete structures.

System-level performance of earthquake-damaged concrete bridges with repaired columns

  • Giacomo Fraioli;Yu Tang;Yang Yang;Lesley H. Sneed
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.361-372
    • /
    • 2024
  • Reinforced concrete (RC) bridge columns are typically designated as the primary source of energy dissipation for a bridge structure during an earthquake. Therefore, seismic repair of RC bridge columns has been studied extensively during the past several decades. On the other hand, few studies have been conducted to evaluate how repaired column members influence the system-level response of an RC bridge structure in subsequent earthquakes. In this study, a numerical model was established to simulate the response of two large-scale RC columns, repaired using different techniques, reported in the literature. The columns were implemented into a prototype bridge model that was subjected to earthquake loading. Incremental dynamic analysis (IDA) and fragility analysis were conducted on numerical bridge models to evaluate the efficacy of the repairs and the post-repair seismic performance of the prototype bridge that included one or more repaired columns in various locations. For the prototype bridge herein modeled, the results showed that a confinement-enhanced oriented repair would not affect the seismic behavior of the prototype bridge. Increasing the strength of the longitudinal reinforcement could effectively reduce the drift of the prototype bridge in subsequent earthquakes. A full repair configuration for the columns was the most effective method for enhancing the seismic performance of the prototype bridge. To obtain a positive effect on seismic performance, a minimum of two repaired columns was required.

Similitude Law and Scale Factor for Blasting Demolition Test on RC Scale Models (철근콘크리트 축소모형의 발파해체실험을 위한 상사법칙 및 축소율)

  • Park, Hoon;Yoo, Ji-Wan;Lee, Hee-Gwang;Song, Jung-Un;Kim, Sung-Kon
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • When doing a blasting demolition on RC structures made of scale models, scale model members considering both a proper scale factor and mechanical characteristics of materials have to be similar to prototype RC members to analyze the collapse behavior of RC structures. In this study. a similitude law considering the density of prototype materials is calculated. Both mix of concrete and arrangement of reinforcement have been described referring to Concrete Standard Specification as well as Design Standard of Concrete Structure. The scale factor on scaled concrete models considering maximum size of coarse aggregate is about one-fifth of a cross section of prototype concrete members. A scale factor on staled steel bar models is about one-fifth of a nominal diameter of prototype steel bar. According to the mechanical test results of scale models, it can be concluded that the modified similitude law may be similar to compressive strength of prototype concrete and yield strength of prototype steel bar.

A Study on the Similitude of member Behavior for Small-Scale Modeling of Reinforced Concrete Structure (철근콘크리트 축소모델의 부재거동 상사성에 관한 연구)

  • 이한선;장진혁
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.177-185
    • /
    • 1996
  • Four types of experiments were performed to check the similitude of member behavior between prototype and 1 /10 scale models : (1) Test of slender columns with P-$\Delta$ effect, (2) Test of short columns with and without confinement steel, (3) Test of simple beams without stirrups, and (4) 'T-beam test. Based on the results of experiments, the conclusions were made as follows : (1) The P-$\Delta$ effect of slender columns can be almost exactly represented by 1/10 scale model. (2) The effect of confinement on short columns by the hoop steel can be also roughly simulated by 1/10 scale model. (3) The failure modes of simple beams without stirrups are brittle shear failures in prototype whereas those of 1/10 scale models are the ductile yielding of tension steel followed by large diagonal tension cracking and compressive concrete failure. (4) The behaviors of prototype and 1/10 scale model in T-beams appear very similar.