• Title/Summary/Keyword: Protoporphyrin IX

Search Result 63, Processing Time 0.03 seconds

The effects of succinylacetone on synthesis of protoporphyrin IX and cell growth of Myxococcus xanthus (Myxococcus xanthus의 protoporphyrin IX의 합성과 세포 성장에 대한 succinylacetone의 영향)

  • 이병욱
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.814-821
    • /
    • 2003
  • Protoporphyrin IX is an intermediate molecule in the heme biosynthetic pathway. Intra- and extracellular concentrations of protoporphyrin IX in the wild type strain, Myxococcus xanthus DK1622 were measured by reverse phase HPLC. The amount of intracellular protoporphyrin IX continuously increased and reached 6.4 picomoles/mg of protein at the stationary phase. Extracellular protoporphyrin IX began to be detected from the mid-exponential phase. The culture supernatant that was collected in the stationary phase contained approximately 3.0 picomoles of proto-porphyrin IX per mg of protein. Spores formed by nutrient depletion contained about 6.5 picomole protoporphyrin IX/mg of protein. The synthesis of protoporphyrin IX and cell growth were strongly inhibited by addition of succinylacetone to a final concentration of $500\muM$. Succinylacetone, however did not appear to interfere developmental processes. Normal developmental behaviors including aggregation and spore formation was achieved even if succinylacetone was added in a medium. Photolysis among cells grown on a starvation medium supplemented with succinylacetone was also observed. These results indicate that protoporphyrin IX may be important to M. ,xanthus vegetative growth, but not critical to development processes.

AN IMPROVED ANALYSIS FOR DETERMINATION OF MONOVINYL AND DIVINYL PROTOPORPHYRIN IX

  • Kim, Jin-Seog;Rebeiz, Constantin A.
    • Journal of Photoscience
    • /
    • v.2 no.2
    • /
    • pp.103-106
    • /
    • 1995
  • For studying chlorophyll biosynthetic heterogeneity of plants, it is necessary to establish a technique for microassay of a putative monovinyl and divinyl protoporphyrin IX. Precise determination of the amounts of monovinyl and divinyl protoporphyrin IX is difficult with optical electronic spectroscopy even at 77$\circ$C. Such a problem could be solved by conversion of protoporphyrin IX to protoporphyrin IX dimethylester with diazomethane and subsequent Mg insertion into protoporphyrin IX dimethylester by reaction with a Grignard solution. The proportion of monovinyl and divinyl Mg-protoporphyrin IX dimethylester formed was measured instead of direct measuring that of protoporphyrin IX by low-temperature spectrofluorometry. The relative proportions of monovinyl and divinyl of protoporphyrin IX, Mg-protoporphyrin IX, and Mgprotoporphyrin IX dimethylester have not changed during the chemical conversion steps. This analysis system could be useful for the study of the monovinyl and divinyl chlorophyll biosynthetic routes in plants.

  • PDF

Origin of Chlorophyll ${\alpha}$ Biosynthetic Heterogeneity in Higher Plants

  • Kim, Jin-Seog;Rebeiz, Constantin A.
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.327-334
    • /
    • 1996
  • In this study, the origin of the monovinyl chlorophyll a carboxylic biosynthetic route was investigated in barley (Hordeum vulgare L.) and com (Zea mays L.). Protoporphyrin IX accumulated in vivo or in vitro was found to be all of the divinyl form. Furthermore, the conversion of divinyl protoporphyrin IX to monovinyl protoporphyrin IX in vitro was not observed. In contrast, the biosynthesis and accumulation of monovinyl Mg-protoporphyrin IX and its methyl ester occurred in etiolated leaves and divinyl Mg-protoporphyrin IX was convertible to monovinyl Mg-protoporphyrin IX in vitro. These results suggest that the monovinyl chlorophyll ${\alpha}$ carboxylic biosynthetic route in plants may originate from the divinyl Mg-protoporphyrin IX pool.

  • PDF

Physicochemical Properties of Protoporphyrin IX by Metal Ions in Acetonitrile-Water Mixture Solution

  • Bark, Ki-Min;Yang, Jeong-Im;Lee, Ho-Suk;Lee, Jee-Bum;Park, Chul-Ho;Park, Hyoung-Ryun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1633-1637
    • /
    • 2010
  • The UV-vis absorption spectrum of protoporphyrin IX shows a very sharp and strong absorption maximum peak at 398 nm in acetonitrile-water mixture solution (1:1 v/v). When divalent metal ions such as $Cu^{2+}$, $Zn^{2+}$, and $Ca^{2+}$ ion were added to protoporphyrin IX, metal protoporphyrin IX complexes were thereby produced. Cu-protoporphyrin IX complexes have the largest formation constant ($K_f$) among them. The fluorescence intensity of protoporphyrin IX was diminished by the presence of $Cu^{2+}$, $Zn^{2+}$, $Ca^{2+}$, $Mn^{2+}$, and $Ni^{2+}$ ions as quenchers. However, $Mg^{2+}$, $Mn^{2+}$, and $Ni^{2+}$ ions are hardly combined with protoporphyrin IX. $Mg^{2+}$ ion does not take part in the fluorescence quenching process of protoporphyrin IX in acetonitrile-water mixture solution. According to the Stern-Volmer plots, fluorescence quenching by $Cu^{2+}$, $Zn^{2+}$, and $Ca^{2+}$ ions involves static quenching, which is due to complex formation. On the contrary, dynamic quenching has a large influence on the overall quenching process, when $Mn^{2+}$ and $Ni^{2+}$ ions were added to protoporphyrin IX in acetonitrile-water mixture solution.

Fluorescence Detection for Protoporphyrin IX Induced from 5-ALA and ALA-methyl ester in Incubated Liver Cancer Cells (간암 세포주에서 5-ALA 및 ALA-methyl ester에 의해 유도된 Protoporphyrin IX의 형광 검출)

  • Kim, Myung-Hwa;Kim, Jung-Mi;Kim, Hyun-Jeong;Lee, In-Seon;Kim, Kyung-Chan;Lee, Chang-Seop
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.168-173
    • /
    • 2007
  • To clarify the usefulness of fluorescent diagnosis for cancer, we investigated the optimal method of administrating 5-aminolevulinic acid (5-ALA), 5-aminolevulinic acid methyl ester (ALA-methyl ester) by analyzing fluorescence signal of Protoporphyrin IX (PpIX) in the cultured normal and cancer cells. 5-ALA and ALA-methyl ester was injected as a photosensitizer to the cancer liver cells (HepG2) and normal liver cells (Chang). Chang and HepG2 cells were incubated with various concentrations of 5-ALA and ALA-methyl ester (0-800 ${\mu}g/mL$). The accumulation of PpIX induced by 5-ALA and ALA-methyl ester was in HepG2 and Chang. The cell viability was measured by MTT assay. Fluorescence of PpIX in HepG2 cell was excited at a wavelength ($\lambda$ = 410 nm) and showed an emission spectrum at 603.2 nm, 660.8 nm and 603.2 nm, 661.4 nm which could be related to the PpIX generation induced by the applied 5-ALA and ALA-methyl ester, respectively. The experimental results showed that fluorescence signal of PpIX was proportional to the concentration of 5-ALA and ALA-methyl ester in tumor cells, but measured with low concentration in normal cells. Another results showed that the PpIX formation rate induced by ALA-methyl ester is higher than that of 5-ALA.

In Vitro Study of Fluorescence Detection for Protoporphyrin IX Induced from 5-Aminolevulinic Acid in Cancerous and Normal Cells (정상 및 암 세포주에서의 5-Aminolevulinic Acid에 의해 유도된 Protoporphyrin IX의 형광 검출을 위한 In Vitro 연구)

  • Kim, Myung-Hwa;Kim, Hyun-Jeong;Lee, In-Seon;Kim, Kyung-Chan;Lee, Chang-Seop
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.171-174
    • /
    • 2006
  • To clarify the usefulness of fluorescent diagnosis for cancer, We investigated the optimal method of administrating 5-aminolevulinic acid(5-ALA) by analyzing fluorescence signal of Protoporphyrin IX(PpIX) in the cultured normal and cancer cells. 5-ALA was injected as a photosensitizer to the cervico-uterine cancer cell line(HeLa) and in normal liver cells(Chang). Chang and HeLa cells were incubated with various concentrations of 5-ALA($0-800{\mu}g/ml$). The accumulation of PpIX induced by 5-ALA was in HeLa and Chang cells. The cell viability was measured by MTT assay. The optimal concentration of ALA that induced maximum levels of PpIX was $50{\mu}g/ml$ in HeLa cell cultured for 24 hours after 5-ALA injection. Fluorescence of PpIX in HeLa cell was excited at a wavelength(${\lambda}$=410 nm) and showed an emission spectrum at 602.3 nm, 659.9 nm which could be related to the PpIX generation induced by the applied 5-ALA. The experimental results showed that fluorescence signal of PpIX was proportional to the concentration of 5-ALA in cancer cells, but measured with low concentration in normal cells.

In Vitro Study of Fluorescence Detection for Protoporphyrin IX Induced from 5-Aminolevulinic Acid in Incubated Lung Cancer Cells (폐암 세포주에서 5-Aminolevulinic Acid에 의해 유도된 Protoporphyrin IX의 형광 진단을 위한 In Vitro 연구)

  • Kim, Myung-Hwa;Kim, Hyun-Jeong;Lee, In-Seon;Kim, Kyung-Chan;Lee, Chang-Seop
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.67-72
    • /
    • 2007
  • This study investigates the optimal method of administrating 5-aminolevulinic acid (5-ALA) in the context of fluorescence detection by analyzing protoporphyrin IX (PpIX) fluorescence in the cultured normal and cancer cells. 5-ALA was injected as a photosensitizer to the lung cancer cells (A549, NCI-H460) and normal lung cells (HeI299). Hel299, A549, and NCI-H460 cells were incubated with various concentrations of 5-ALA ($0\sim800{\mu}g/mL$). The accumulation of PpIX induced by 5-ALA was observed in A549, NCI-H460 and Hel299 cells. The cell viability was estimated by means of the MTT assay. Formation of PpIX was measured by fluorescence spectroscopy. Especially, formation of PpIX in cancer cells was higher than normal cells. This study suggests that the difference of PpIX induced in normal and cancer cells treated with 5-ALA may use by means of fluorescence diagnosis for cancer.

Peroxidase and Photoprotective Activities of Magnesium Protoporphyrin IX

  • Kim, Eui-Jin;Oh, Eun-Kyoung;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2014
  • Magnesium-protoporphyrin IX (Mg-PPn), which is formed through chelation of protoporphyrin IX (PPn) with Mg ion by Mg chelatase, is the first intermediate for the (bacterio)chlorophyll biosynthetic pathway. Interestingly, Mg-PPn provides peroxidase activity (approximately $4{\times}10^{-2}units/{\mu}M$) detoxifying $H_2O_2$ in the presence of electron donor(s). The peroxidase activity was not detected unless PPn was chelated with Mg ion. Mg-PPn was found freely diffusible through the membrane of Escherichia coli and Vibrio vulnificus, protecting the cells from $H_2O_2$. Furthermore, unlike photosensitizers such as tetracycline and PPn, Mg-PPn did not show any phototoxicity, but rather it protected cell from ultraviolet (UV)-A-induced stress. Thus, the exogenous Mg-PPn could be used as an antioxidant and a UV block to protect cells from $H_2O_2$ stress and UV-induced damage.

Effect of N-Methylmesoporphyrin IX on the Branch Point of the Tetrapyrrole Pathway in Pea (Pisum sativum L.) Chloroplasts

  • Yu, Gyung-Hee
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.523-526
    • /
    • 1995
  • Administering ${\delta}-aminolevulinic$ acid (ALA) to isolated pea (Pisum sativum L.) chloroplasts resulted in an increase of heme synthesis in the heme branch of the tetrapyrrole pathway. At 0.1 mM ALA, in the presence of 1 mM $FeSO_4$ heme synthesis was stimulated up to 7 fold of that in the absence of $FeSO_4$. N-Methylmesoporphyrin IX (NMMP), a powerful inhibitor of ferrochelatase, inhibited heme synthesis by 95% at one micromolar concentration. The addition of A TP to the chloroplasts caused not only heme synthesis, but Mg-protoporphyrin IX synthesis in the chlorophyll branch of the tetrapyrrole pathway. In the presence of NMMP, however, inhibition of Mg-protoporphyrin IX synthesis was not observed whereas heme synthesis was inhibited completely.

  • PDF