• Title/Summary/Keyword: Proton energy

Search Result 757, Processing Time 0.03 seconds

Effect of Temperature and Humidity on the Performance Factors of a 15-W Proton Exchange Membrane Fuel Cell

  • Dien Minh Vu;Binh Hoa Pham;Duc Pham Xuan;Dung Nguyen Dinh;Vinh Nguyen Duy
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.241-246
    • /
    • 2023
  • Fuel cells are one of the renewable energy sources that have sparked a lot of scientific attention for solving problems related to the energy crisis and environmental pollution. One of the most crucial subjects concerning the utilization of fuel cells is modeling. Therefore, an analytical steady-state and dynamic fuel cell model was described in this study. The parameter for the identification process was investigated, and the MATLAB/Simulink implementation was demonstrated. A 15-W proton exchange membrane fuel cell was used to apply the suggested modeling methodology. Comparing experimental and simulation findings indicated that the model error was constrained to 3%. This study showed that temperature and humidity affect fuel cell performance.

Proton therapy: Literature review of clinical effectiveness as an advanced convergent cancer therapy (양성자 치료: 융복합 첨단 암 치료로서의 임상적 유효성에 대한 문헌 고찰)

  • Park, Hyojung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.191-198
    • /
    • 2018
  • This study was conducted to evaluate the clinical effectiveness of proton therapy as an advanced convergent cancer therapy. Clinical data of proton therapy were analyzed. As proton enters patient's body, it releases low dose of energy and shows an increasing energy deposition as it reaches certain point unlike x-ray. It may therefore reduce the radiation dose to the normal tissues in front and beyond the lesion and minimize the radiation damage. Proton therapy is expected to improve clinical outcomes and reduce treatment related toxicities. It is used in various cancers. Further studies are necessary.

Effects of the Micro-hole Target Structures on the Laser-driven Energetic Proton Generation

  • Pae, Ki-Hong;Choi, Il-Woo;Hahn, Sang-June;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.48-52
    • /
    • 2009
  • Micro-hole targets are studied to generate energetic protons from laser-thin foil targets by using 2-dimensional particle-in-cell simulations. By using a small hole, the maximum energy of the accelerated proton is increased to 4 times higher than that from a simple planar target. The main proton acceleration mechanism of the hole-targets is the electrostatic field created between the fast electrons accelerated by the laser pulse ponderomotive force combined with the vacuum heating and the target rear surface. But in this case, the proton angular distribution shows double-peak shape, which means poor collimation and low current density. By using a small cone-shaped hole, the maximum proton energy is increased 3 times higher than that from a simple planar target. Furthermore, the angular distribution of the accelerated protons shows good collimation.

Proton Therapy for Head and Neck Cancer: Current Clinical Applications and Future Direction (두경부암의 양성자치료: 현재의 임상 적용 및 발전 방향)

  • Oh, Dongryul
    • Korean Journal of Head & Neck Oncology
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Intensity-modulated radiation therapy (IMRT) using X-rays is a standard technique implemented for treating head and neck cancer (HN C). Compared to 3D conformal RT, IMRT can significantly reduce the radiation dose to surrounding normal tissues by using a highly conformal dose to the tumor. Proton therapy is a type of RT that uses positively charged particles named protons. Proton therapy has a unique energy deposit (i.e., Bragg peak) and greater biological effectiveness than that of therapy using X-rays. These inherent properties of proton therapy make the technique advantageous for HNC treatment. Recently, advanced techniques such as intensity-modulated proton therapy have further decreased the dose to normal organs with a higher conformal dose to the tumor. The usage of proton therapy for HNC is becoming widespread as the number of operational proton therapy centers has increased worldwide. This paper aims to present the current clinical evidence of proton therapy utility to HNC clinicians through a literature review. It also discusses the challenges associated with proton therapy and prospective development of the technique.

Linear Energy Transfer Dependence Correction of Spread-Out Bragg Peak Measured by EBT3 Film for Dynamically Scanned Proton Beams

  • Lee, Moonhee;Ahn, Sunghwan;Cheon, Wonjoong;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.135-144
    • /
    • 2020
  • Purpose: Gafchromic films for proton dosimetry are dependent on linear energy transfers (LETs), resulting in dose underestimation for high LETs. Despite efforts to resolve this problem for single-energy beams, there remains a need to do so for multi-energy beams. Here, a bimolecular reaction model was applied to correct the under-response of spread-out Bragg peaks (SOBPs). Methods: For depth-dose measurements, a Gafchromic EBT3 film was positioned in water perpendicular to the ground. The gantry was rotated at 15° to avoid disturbances in the beam path. A set of films was exposed to a uniformly scanned 112-MeV pristine proton beam with six different dose intensities, ranging from 0.373 to 4.865 Gy, at a 2-cm depth. Another set of films was irradiated with SOBPs with maximum energies of 110, 150, and 190 MeV having modulation widths of 5.39, 4.27, and 5.34 cm, respectively. The correction function was obtained using 150.8-MeV SOBP data. The LET of the SOBP was then analytically calculated. Finally, the model was validated for a uniform cubic dose distribution and compared with multilayered ionization chamber data. Results: The dose error in the plateau region was within 4% when normalized with the maximum dose. The discrepancy of the range was <1 mm for all measured energies. The highest errors occurred at 70 MeV owing to the steep gradient with the narrowest Bragg peak. Conclusions: With bimolecular model-based correction, an EBT3 film can be used to accurately verify the depth dose of scanned proton beams and could potentially be used to evaluate the depth-dose distribution for patient plans.

Improvement of Turn-off Switching Characteristics of the PT-IGBT by Proton Irradiation (양성자 조사법에 의한 PI-IGBT의 Turn-off 스위칭 특성 개선)

  • Choi, Sung-Hwan;Lee, Yong-Hyun;Lee, Jong-Hun;Bae, Young-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.22-23
    • /
    • 2006
  • Proton irradiation technology was used for improvement of switching characteristics of the PT-IGBT. Proton irradiation was carried out at 5.56 MeV energy with $1{\times}10^{12}/cm^2$ doze from the back side of the wafer. Characterization of the device was performed by I-V, breakdown voltage, threshold voltage, and turn-off delay time measurement. For irradiated device by 5.56 MeV energy, the breakdown voltage and the threshold voltage were 730 V and 6.5~6.6 V, respectively. The turn-off time has been reduced to 170 ns, which was original $6\;{\mu}s$ for the un-irradiated device.

  • PDF

Progress on Proton Therapy Facility Project in National Cancer Center, Korea

  • Kim, Jong-Won;Park, Sung-Yong;Park, Dahl;Kim, Dae-Yong;Shin, Kyung-Hwan;Cho, Kwan-Ho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.180-182
    • /
    • 2002
  • A Proton Therapy Center was established this year in National Cancer Center, Korea. We chose IBA of Belgium as the vendor of the equipment package. A 230 MeV fixed-energy cyclotron will deliver proton beams into two gantry rooms, one horizontal beam room, and one experimental station. The building for the equipment is currently under design with a special emphasis on radiation shielding. Installation of equipments is expected to begin in September next year starting with the first gantry, and the acceptance test will be performed about a year later. To generate therapeutic radiation fields the wobbling method will be a main treatment mode for the first gantry. A pencil beam scanning system on the other hand will be equipped for the second gantry relying on the availability at the time of installation. The beam scanning with intensity modulation adapted will be a most advanced form in radiation therapy known as IMPT. Some details on the project progress, scope of the system, and design of building are described.

  • PDF

Calibration of HEPD on KOMPSAT-1 Using the KCCH Cyclotron

  • Shin, Young-Hoon;Rhee, Jin-Geun;Min, Kyoung-Wook;Lee, Chun-Sik;Lee, Ju-Hahn;Kwon, Young-Kwan;Kim, Jong-Chan;Ha, Jang-Ho;Park, Se-Hwan;Lee, Chang-Hack;Park, H.S.;Kim, Young-Kyun;Chai, Jong-Seo;Kim, Yu-Seong;Lee, Hye-Young
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 1999
  • Space Physics Sensor (SPS) on-board the KOMPSAT-1 consists of the High Energy Particle Detector (HEPD) and the Ionospheric Measurement Sensor (IMS). The HEPD is to characterize the low altitude high energy particle environment and the effects on the microelectronics due to these high energy particles. It is composed of four sensors: Proton and Electron Spectrometer(PES), Linear Energy Transfer Spectrometer (LET), Total Dose Monitor (TDM), and Single Event Monitor (SEM). 35 MeV proton beam from the medical KCCH cyclotron, at Korea Cancer Center Hospital in Seoul, is used to calibrate the PES. Primary proton beam of 35MeV scattered by polypropylene target is converted to various energy protons according to the elastic collision kinematics. In this calibration, the threshold level of the proton in the PES can be determined and the energy ranges of PES channels are also calibrated.

Current Sensing Atomic Force Microscopy Study of the Morphological Variation of Hydrated Pronton Exchange Membrane (Current Sensing Atomic Force Microscopy를 이용한 PEM의 수화 현상에 따른 모폴로지 변화 연구)

  • Kwon, Osung;Lee, Sangcheol;Son, ByungRak;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.9-16
    • /
    • 2014
  • A proton exchange membrane is a core component in the proton exchange membrane fuel cell because the role of proton exchange membrane(PEM)is supplying proton conductivity to fuel cell, a gas separator, and insulating between an anode and cathode. Among various role of PEM, supplying proton conductivity is the most important and the proton conductivity is strongly related the structural evolution of PEM by hydration. Thus a lot of studies have done by past few decade based on small angle X-ray scattering and wide angle X-ray scattering for understanding morphological structure of the PEM. Resulting from these studies, several morphological models of hydrated PEM are proposed. Current sensing atomic force microscopy (CSAFM) can map morphology and conductance on the membrane simultaneously. It can be the best tool for studying heterogenous structured materials such as PEM. In this study, the hydration of the membrane is examined by using CSAFM. Conductance and morphological images are simultaneously mapped under different relative humidity. The conductance images, which are mapped from different relative humidity, are analyzed by statistical methode for understanding ionic channel variation in PEM.