• Title/Summary/Keyword: Proton beam therapy

Search Result 104, Processing Time 0.025 seconds

Demonstration of the Effectiveness of Monte Carlo-Based Data Sets with the Simplified Approach for Shielding Design of a Laboratory with the Therapeutic Level Proton Beam

  • Lai, Bo-Lun;Chang, Szu-Li;Sheu, Rong-Jiun
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Background: There are several proton therapy facilities in operation or planned in Taiwan, and these facilities are anticipated to not only treat cancer but also provide beam services to the industry or academia. The simplified approach based on the Monte Carlo-based data sets (source terms and attenuation lengths) with the point-source line-of-sight approximation is friendly in the design stage of the proton therapy facilities because it is intuitive and easy to use. The purpose of this study is to expand the Monte Carlo-based data sets to allow the simplified approach to cover the application of proton beams more widely. Materials and Methods: In this work, the MCNP6 Monte Carlo code was used in three simulations to achieve the purpose, including the neutron yield calculation, Monte Carlo-based data sets generation, and dose assessment in simple cases to demonstrate the effectiveness of the generated data sets. Results and Discussion: The consistent comparison of the simplified approach and Monte Carlo simulation results show the effectiveness and advantage of applying the data set to a quick shielding design and conservative dose assessment for proton therapy facilities. Conclusion: This study has expanded the existing Monte Carlo-based data set to allow the simplified approach method to be used for dose assessment or shielding design for beam services in proton therapy facilities. It should be noted that the default model of the MCNP6 is no longer the Bertini model but the CEM (cascade-exciton model), therefore, the results of the simplified approach will be more conservative when it was used to do the double confirmation of the final shielding design.

In vitro and in vivo Biological Responses of Proton Irradiation from MC-50 Cyclotron

  • Jung, Uhee;Eom, Hyeon Soo;Jeong, Kwon;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.223-229
    • /
    • 2012
  • In this study, we investigated the biological damage and stress responses induced by ion beam (proton beam) irradiation as a basis for the development of protective measures against space radiation. We examined the biological effects of proton beam produced by MC-50 cyclotron at KIRAMS on the cultured cells and mice. The proton beam energy used in this study was 34.9 MeV and the absorption dose rate for cells and mice were $0.509Gy\;sec^{-1}$ and $0.65Gy\;sec^{-1}$, respectively. The cell survival rates measured by plating efficiency showed the different sensitivity and dose-relationship between CHO cells and Balb/3T3 cells. HGPRT gene mutation frequency in Balb/3T3 was $15{\times}10^{-6}Gy^{-1}$, which was similar to the reported value of X-ray. When stress signaling proteins were examined in Balb/3T3 cells, $I{\kappa}B-{\alpha}$ decreased markedly whereas p53, phospho-p53, and Rb increased after proton beam irradiation, which implied that the stress signaling pathways were activated by proton beam irradiation. In addition, cellular senescence was induced in IMR-90 cells. In the experiments with C57BL/6 mouse, the immune cells (white blood cells, lymphocytes) in the peripheral blood were greatly reduced following proton beam irradiation whereas red blood cells and platelets showed relatively little change. These results can be utilized as basic data for studying the biological effects of proton beam using MC-50 cyclotron with respect to proton therapy research as well as space radiation research.

Study on Absorbed Dose Determination of Electron Beam Quality for Cross-calibration with Plane-parallel Ionization Chamber (평행평판형이온함의 교차교정 시 전자선 선질에 따른 흡수선량 결정에 대한 연구)

  • Rah, Jeong-Eun;Shin, Dong-Oh;Park, So-Hyun;Jeong, Ho-Jin;Hwang, Ui-Jung;Ahn, Sung-Hwan;Lim, Young-Kyung;Kim, Dong-Wook;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Suh, Tae-Suk;Park, Sung-Yong
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2009
  • Absorbed dose to water based protocols recommended that plane-parallel chambers be calibrated against calibrated cylindrical chambers in a high energy electron beam with $R_{50}$>7 $g/cm^2$ (E${\gtrsim}$16 MeV). However, such high-energy electron beams are not available at all radiotherapy centers. In this study, we are compared the absorbed dose to water determined according to cross-calibration method in a high energy electron beam of 16 MeV and in electron beam energies of 12 MeV below the cross-calibration quality remark. Absorbed dose were performed for PTW 30013, Wellhofer FC65G Farmer type cylindrical chamber and for PTW 34001, Wellhofer PPC40 Roos type plane-parallel chamber. The cylindrical and the plane-parallel chamber to be calibrated are compared by alternately positioning each at reference depth, $Z_{ret}=0.6R_{50}-0.1$ in water phantom. The $D_W$ of plane-parallel chamber are derived using across-calibration method at high-energy electron beams of 16, 20 MeV. Then a good agreement is obtained the $D_W$ of plane-parallel chamber in 12 MeV. The agreement between 20 MeV and 12 MeV are within 0.2% for IAEA TRS-398.

  • PDF

Research for Lateral Penumbra and Dose Distribution When Air Gap Changing in Proton Therapy Case (양성자치료시 Air Gap 변화에 따른 Lateral Penumbra와 선량분포 변화에 대한 비교 및 연구)

  • Kim, Jae-Won;Sim, Jin-Seob;Jang, Yo-Jong;Kang, Dong-Yun;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • Purpose: In the treatment of high-energy protons Air gap (the distance between the patient and the exit Beam) Lateral Penumbra of the changes to the increase in the radiation fields can form unnecessary and Increase the maximum dose at the site of treatment and reduced the minimum dose homogeneity of dose distributions can decline. Air gap due to this change in dose distribution compared to investigate studied. Materials and Methods: Received proton therapy at our institution Lung, Liver patients were selected and the size of six other Air gap in Field A and Field B 2, 4, 6, 8, 10 cm Proton external beam planning system by setting up a treatment plan established. Air gap according to the Lateral Penumbra area and DVH (Dose Volume Histogram) to compare the maximum dose and minimum dose of PCTV areas were compared. In addition, the dose homogeneity within PCTV Homogeneity index to know the value and compared. Results: Air gap (2, 4, 6, 8, 10 cm) at each change in field size were analyzed according to the Lateral Penumbra region Field A Change in the Air gap 2~10 cm by 1.36~1.75 cm, the average continuously increased about 28.7% and Field B Change in the Air gap 2~10 cm by 1.36~1.75 cm, the average continuously increased about 31.6%. The result of DVH analysis for relative dose of the maximum dose According to Air gap 2~10 cm is the mean average of 110.3% from 108.1% to a sustained increased by approximately 2.03% and The average relative dose of minimum dose is the mean average of 93.9% percent to 90.8 percent from the continuous decrease of about 3.31 percent. The result of Homogeneity index value to the according to Air gap 2~10 cm is the 2-fold increase from 1.09 to 2.6. Conclusion: In proton therapy case, we can see the increasing of lateral penumbra area when airgap getting increase. And increasing of Dmax and decreasing Dmin in the field are making increase homogeneity index, So we can realize there are not so good homogeneity in the PCTV. Therefore we should try to minimize air gap in proton therapy case.

  • PDF

Commissioning and Validation of a Dedicated Scanning Nozzle at Samsung Proton Therapy Center

  • Chung, Kwangzoo;Han, Younyih;Ahn, Sung Hwan;Kim, Jin Sung;Nonaka, Hideki
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.267-271
    • /
    • 2016
  • In this study, we present the commissioning and validation results of a dedicated scanning nozzle. The dedicated scanning nozzle is installed in one of the two gantry treatment rooms at Samsung Proton Therapy Center. Following a successful completion of the acceptance test, the commissioning process including the beam data measurement for treatment planning system has been conducted. Extended measurements have been conducted as a validation of the clinical performance of the nozzle and various quality assurance protocols have been prepared.

Correction of Prompt Gamma Distribution for Improving Accuracy of Beam Range Determination in Inhomogeneous Phantom

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Young-su;Kim, Chan Hyeong;Shin, Dong Ho;Lee, Se Byeong;Jeong, Jong Hwi
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.207-217
    • /
    • 2017
  • For effective patient treatment in proton therapy, it is therefore important to accurately measure the beam range. For measuring beam range, various researchers determine the beam range by measuring the prompt gammas generated during nuclear reactions of protons with materials. However, the accuracy of the beam range determination can be lowered in heterogeneous phantoms, because of the differences with respect to the prompt gamma production depending on the properties of the material. In this research, to improve the beam range determination in a heterogeneous phantom, we derived a formula to correct the prompt-gamma distribution using the ratio of the prompt gamma production, stopping power, and density obtained for each material. Then, the prompt-gamma distributions were acquired by a multi-slit prompt-gamma camera on various kinds of heterogeneous phantoms using a Geant4 Monte Carlo simulation, and the deduced formula was applied to the prompt-gamma distributions. For the case involving the phantom having bone-equivalent material in the soft tissue-equivalent material, it was confirmed that compared to the actual range, the determined ranges were relatively accurate both before and after correction. In the case of a phantom having the lung-equivalent material in the soft tissue-equivalent material, although the maximum error before correction was 18.7 mm, the difference was very large. However, when the correction method was applied, the accuracy was significantly improved by a maximum error of 4.1 mm. Moreover, for a phantom that was constructed based on CT data, after applying the calibration method, the beam range could be generally determined within an error of 2.5 mm. Simulation results confirmed the potential to determine the beam range with high accuracy in heterogeneous phantoms by applying the proposed correction method. In future, these methods will be verified by performing experiments using a therapeutic proton beam.

Image Guided Brachytherapy in Cervix Cancer

  • Park, Sung-Yong;Shin, Kyung-Hwan;Park, Dahl;Cho, Jung-Keun;Kim, Dae-Yong;Kim, Jong-Won;Cho, Kwan-Ho;Kim, Tae-Hyun;Chie, Eui-Kyu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.154-156
    • /
    • 2002
  • Brachytherapy has a long history in the treatment of cancer. However, the treatment planning technique for brachytherapy has lagged somewhat behind the corresponding developments for external beam therapy as far as the imaging technique is concerned. Currently, the orthogonal-film-based treatment planning is performed at most institutions even though the CT-based planning is available. The aim of this study is to evaluate the CT-based vs. the orthogonal-film-based treatment planning in cervix cancer. The doses to point A, point B, rectum and bladder points according to ICRU 38 were calculated for the two methods above. In addition, the volumetric studies such as 3D dose computation and DVH were obtained for the CT-based planning. For the bulky tumor, the isodose lines of point A prescription were not fairly covered for the CTV. The CT -based dose planning can overestimate the maximum dose delivered to bladder and rectum by 30%. The CT-based planning has several advantages over the orthogonal-film-based such as 3D dose display, DVH, and more accurate target delineation. It is suggested that the prescription point in cervix cancer be revised especially for the bulky tumor.

  • PDF

The Usability Test of Manufactured Rounded Extension in Proton Therapy (자체 제작한 양성자 치료용 Rounded Extension의 유용성 평가)

  • Park, Ji-Yeon;Jang, Yo-Jong;Kang, Dong-Yun;Yeom, Du-Seok;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • Purpose: Long Extension (LE) is used in proton therapy for lung and abdomen. However, it has limitations in surface area, produces collision in posterior oblique beam which creates limitations in various gantry angles in planning therapy and increases air gap (distance between patient and compensator). Therefore, this study investigates the usability of manufactured Rounded Extension (RE) in comparison to LE to use the most suitable extension in proton therapy. Materials and Methods: To compare structural features of LE and RE. This study investigated usable gantry angle for snout sizes 100, 180 and 250 and CT scanned Humanoid phantom. And it compared the air gap in posterior oblique direction. Results: The structural features of two extensions are as follow. Because of the existence of supporting bar, the width of LE was 40 cm and RE was 50 cm. Result of the investigation of usable gantry angle for snout sizes 100, 180 and 250 are as follow. LE is ${\pm}36$ (average) at 180 degree and RE is ${\pm}70$ (average). And also, the air gap of RE is decreased by 11.3 cm in average at the same gantry angle. Conclusion: Manufactured RE for proton therapy has several benefits than LE. Its therapy surface area is wider and range of usable gantry angle is also wider. Also, the air gap at the posterior oblique beam has decreased. Therefore the usability of RE in proton therapy of lung and abdomen will be increased compared to LE. However, the air gap of proton therapy at the lateral direction may be increased, so there may be need for make up to decrease air gap at the lateral direction in the future.

  • PDF

Comparison of Beam Delivery Modes in Prostate Cancer Proton Therapy: A Treatment Planning Comparison Study (전립선암 환자 양성자치료 시 빔 전달방식에 따른 치료계획 비교)

  • Kim, Youn Young;Youm, Doo Seok;Jang, Yo Jong;Kang, Dong Yun;Park, Jeong Hoon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.153-158
    • /
    • 2013
  • Purpose: After making two plans, the Double Scattering (DS) Mode and The Pencil Beam Scanning (PBS) Mode, of patients on early prostate cancer, we not only compare the dose conformity and the dose homogeneity by analyzing each DVH, CN and HI, but also evaluate normal structures's sparing effect on each mode. Materials and Methods: Planes about nine patients, who did proton therapy, on prostate cancer was setted using the Eclipse proton external beam planning system. The prescription dose, every $2.5 Gy{\times}28$ fractions=70 Gy, was delivered to the PTV. The CN and the HI were getted by anlazing each DVHs for the DS Plan and the PBS Plan. Also, normal structures' %volumes according to dose of the PBS are campared with those of the DS. Results: The average CN of the PTV is increase 16.63% from DS $0.68{\pm}0.07$ to PBS $0.79{\pm}0.01$, and the average IN of the PTV is decrease -22.66 % from DS $0.12{\pm}0.03$ to PBS $0.09{\pm}0.01$. The PBS has litter %Volumes of normal structures than the DS about every patient except Rectum. The average %Volume of Left Femoral Head receiving ${\geq}30$ Gy shows most high decreasing rate, -79.93%, from DS to PBS and the average %Volume of Rectum receiving ${\geq}70$ Gy shows most low decreasing rate, -3.03%, from DS to PBS. Conclusion: Therefore, the PBS is more effective achieving the dose conformity and the dose Homogeneity than DS, and better to reduce unnecessary dose arriving normal structures, especially the femoral heads.

  • PDF