• 제목/요약/키워드: Proton Conductor

검색결과 32건 처리시간 0.025초

프로톤 전도성 SrCe0.95Gd0.05O3-α-Ce0.9Gd0.1O2-β 복합체 멤브레인의 수소투과 특성 (Hydrogen Permeation of SrCe0.95Gd0.05O3-α-Ce0.9Gd0.1O2-β Proton-Conducting Ceramic Membranes)

  • 김환수;유지행;신민재
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.161-167
    • /
    • 2011
  • Proton conductors have attracted considerable attention for solid oxide fuel cell (SOFC), hydrogen pump, gas sensor, and membrane separators. Doped $SrCeO_3$ exhibits appreciable proton conductivity in hydrogen-containing atmosphere at high temperature. However commercial realization has been hampered due to the reactivity of $SrCeO_3$ with $CO_2$. The chemical stability and proton conductivity are dependent on dopant type. The purpose of this work is to investigate chemical stability of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composites in $CO_2$ and $H_2$ gases. Thermogravimetric analysis (TGA) was performed in gaseous $CO_2$ and electrical conductivity of the composites were also measured between 500 and $900^{\circ}C$ in air and $H_2$ atmosphere. $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composite membranes showed good chemical stability of in $CO_2$ atmosphere and high conductivity at hydrogen condition. The hydrogen permeation of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composite membranes was investigated as a function of volumetric content of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}$. The $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$(6:4) membrane with a thickness of 1.0 mm showed the highest hydrogen permeability with the flux reaching of 0.12 $ml/min{\cdot}cm^2$ at $800^{\circ}C$ in 100%$H_2/N_2$ as feed gas.

Study on nuclear magnetic resonance of superionic conductor NH4HSeO4 in rotating frame

  • Choi, Jae Hun;Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제18권1호
    • /
    • pp.41-46
    • /
    • 2014
  • In order to obtain information on the structural geometry of $NH_4HSeO_4$ near the phase transition temperature, the spectrum and spin-lattice relaxation time in the rotating frame $T_{1{\rho}}$ for the ammonium and hydrogen-bond protons were investigated through $^1H$ MAS NMR. $T_{1{\rho}}$ for the hydrogen-bond protons abruptly decreased at high temperature and it is associated with the change in the structural geometry in $O-H{\cdots}O$ bonds. This mobility of the hydrogen-bond protons may be the main reason for the high conductivity.

Preparation and Sintering Characteristics of Y-doped $SrZrO_3$ by Citrate Gel Method

  • Jeon, Yang-Seuk;Sim, Soo-Man
    • The Korean Journal of Ceramics
    • /
    • 제5권3호
    • /
    • pp.217-223
    • /
    • 1999
  • Proten-conductive $SrZr_{0.95} Y_{0.05} O_{2.975}$ powder was prepared by citrate gel method its characteristics and sinterability were investigated. Amorphous gel could be obtained from a citric acid solution that $SrCO_3$ and metal nitrates were dissolved. The initial decomposition of the gel proceeded up to $250^{\circ}C$, followed by combustion of its decomposition products in the temperature range from $250^{\circ}C$ to $500^{\circ}C$. A well-crystallized perovskite phase with a stoichiometric composition after calcination at $1000^{\circ}C$. Sintering green compacts of this powder for 6 h showed a considerable densification to start at $1200^{\circ}C$ and resulted in 86.8% and 96.5% relative densities at $1400^{\circ}C$ and $1600^{\circ}C$, respectively. Whereas, the powder compacts prepared by solid state reaction had much lower relative densities, 73% at $1400^{\circ}C$ and 92% at $1600^{\circ}C$.

  • PDF

Preparation of Multicomponent Ceramic Powders by Ultrasonic Spray Pyrolysis

  • Youn, Jeong-Han;Chung, Byung-Joo;Sim, Soo-Man
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.58-63
    • /
    • 2000
  • The preparation of Y-doped $SrZrO_3$powder by ultrasonic spray pyrolysis was investigated as a representative system, in order to produce fine, single phase multicomponent oxide powders. A precursor solution containing metal nitrates, citric acid and ethylene glycol was atomized glycol was atomized with an ultrasonic spray nozzle. Gel particles formed by organic functional groups were pyrolyzed and subsequently calcined at $800^{\circ}C$ to obtain well-crystallized, single perovskite phase. Most of large particles exhibited macroscopic pores and weak agglomeration between primary particles. However, strong agglomeration was observed in the surfaces of large particles. The effect of the microstructures of these particles on size reduction to submicron particles was described.

  • PDF

Grain Boundary Protonic Conductivity in Highly Dense Nano-crystalline Y-doped BaZrO3

  • Park, Hee-Jung;Munir, Zuhair A.;Kim, Sang-Tae
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.71-74
    • /
    • 2010
  • We have investigated protonic conduction in highly dense (>98%) polycrystalline Y-doepd $BaZrO_3$ (BYZ) ceramic with an average grain size of ~85 nm. It is observed that the protonic conductivity across the grain boundaries in this nano-crystallilne BYZ (n-BYZ) is significantly higher than the microcrystalline counterpart. Such a remarkable enhancement in grain boundary conductivity results in high overall conductivity that may allow this chemically stable protonic conductor to serve as a solid electrolyte for low-temperature solid oxide fuel cell applications.

The Influence of NaCl and Carbonylcyanide-m-Chlorophenylhydrazone on the Production of Extracellular Proteases in a Marine Vibrio Strain

  • Kim, Young-Jae
    • Journal of Microbiology
    • /
    • 제42권2호
    • /
    • pp.156-159
    • /
    • 2004
  • In general, the salinity of the ocean is close to 3.5% and marine vibrios possess the respiratory chain-linked Na$\^$+/ pump. The influence of sodium chloride and the proton conductor carbonylcyanide m-chlo-rophenylhydrazone (CCCP) on the production of extracellular proteases in a marine Vibrio strain was examined. At the concentration of 0.5 M, sodium chloride minimally inhibited the activity of extra-cellular proteases by approximately 16%, whereas at the same concentration, the producton of extra-cellular proteases was severely inhibited. On the other hand, the production of extracellular proteases was completely inhibited by the addition of 2 ${\mu}$M CCCP at pH 8.5, where the respiratory chain-linked Na$\^$+/ pump functions.

Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구 (Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3)

  • 장익황;지상훈;백준열;이윤호;박태현;차석원
    • 대한기계학회논문집B
    • /
    • 제36권9호
    • /
    • pp.931-935
    • /
    • 2012
  • 본 연구에서는 저온형 연료전지와 고온형 연료전지의 작동 및 구성 요소 측면 단점들을 보완하기 위해 중온 영역에서 작동하는 박막 연료전지를 제작하였다. 박막 연료전지는 이트륨이 도핑된 바륨 지르코네이트(BYZ) 전해질과 백금 수소극/공기극으로 이루어져 있으며, 성능은 $350^{\circ}C$에서 측정하였다. 350nm의 두께를 가지는 백금 수소극은 다공성 기판 위에 스퍼터링 기법을 이용하여 증착하였다. BYZ전해질은 펄스레이저 기법을 이용하여 $1{\mu}m$ 증착하였고, 상부에 스퍼터링 기법을 이용하여 200nm의 두께를 가지는 백금 공기극을 증착하였다. 개회로 전압은 약 0.81V이었고, 최대 출력 성능은 11.9mW/$cm^2$이었다.

$BaCeO_3$계 프로톤 전도 산화물의 화학적 불안정성 (Chemical Instability of $BaCeO_3$-Based Proton Conducting Oxide)

  • 변명섭;강은태;조우석;김진호;황광택
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.92-99
    • /
    • 2011
  • Barium cerate ($BaCeO_3$) related perovskite ceramics currently dominate the high-temperature proton conductor field. Unfortunately, these materials have very stringent environmental limitations necessitating the costly and complex conditioning or cleaning of the application feed-gas. Commercial realization has been hampered, in part, because of the reactivity of $BaCeO_3$ with $CO_2$, and to some extent $H_2O$. And sintered $BaCeO_3$ decomposed at a rate comparable to the powder samples. In this article, the chemical stability and the structural changes of $BaCe_{0.9-X}Y0.1La_XO_{3-\delta}$ (X=0, 0.1, 0.2) have been systematically investigated in the atmosphere containing carbon dioxide ($CO_2$) and water vapor ($H_2O$). The sintering characteristics were studied in $1600^{\circ}C$, sintered pellets disintegrate and decompose upon contacting boiling water on the surface only.

Space Radiation Shielding Calculation by Approximate Model for LEO Satellites

  • Shin Myung-Won;Kim Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.1-11
    • /
    • 2004
  • Two approximate methods for a cosmic radiation shielding calculation in low earth orbits were developed and assessed. Those are a sectoring method and a chord-length distribution method. In order to simulate a change in cosmic radiation environments along the satellite mission trajectory, IGRF model and AP(E)-8 model were used. When the approximate methods were applied, the geometrical model of satellite structure was approximated as one-dimensional slabs, and a pre-calculated dose-depth conversion function was introduced to simplify the dose calculation process. Verification was performed with mission data of KITSAT-1 and the calculated results were also compared with detailed 3-dimensional calculation results using Monte Carlo calculation. Dose results from the approximate methods were conservatively higher than Monte Carlo results, but were lower than experimental data in total dose rate. Differences between calculation and experimental data seem to come from the AP-8 model, for which it is reported that fluxes of proton are underestimated. We confirmed that the developed approximate method can be applied to commercial satellite shielding calculations. It is also found that commercial products of semi-conductors can be damaged due to total ionizing dose under LEO radiation environment. An intensive shielding analysis should be taken into account when commercial devices are used.

BaCeO3-BaZrO3 고용체(BCZY) 기반 프로톤 세라믹 연료전지(PCFC)용 고성능 전해질 개발 (BaCeO3-BaZrO3 Solid Solution (BCZY) as a High Performance Electrolyte of Protonic Ceramic Fuel Cells (PCFCs))

  • 안혁순;신동욱;최성민;이종호;손지원;김병국;제해준;이해원;윤경중
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.271-277
    • /
    • 2014
  • To overcome the limitations of the solid oxide fuel cells (SOFCs) due to the high temperature operation, there has been increasing interest in proton conducting fuel cells (PCFCs) for reduction of the operating temperature to the intermediate temperature range. In present work, the perovskite $BaCe_{0.85-x}Zr_xY_{0.15}O_{3-\delta}$ (BCZY, x = 0.1, 0.3, 0.5, and 0.7) were synthesized via solid state reaction (SSR) and adopted as an electrolyte materials for PCFCs. Powder characteristics were examined using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Brunauer, Emmett and Teller (BET) surface area analysis. Single phase BCZY were obtained in all compositions, and chemical stability was improved with increasing Zr content. Anode-supported cell with $Ni-BaCe_{0.55}Z_{0.3}Y_{0.15}O_{3-\delta}$ (BCZY3) anode, BCZY3 electrolyte and BCZY3-$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ (BSCF) composite cathode was fabricated and electrochemically characterized. Open-circuit voltage (OCV) was 1.05 V, and peak power density of 370 ($mW/cm^2$) was achieved at $650^{\circ}C$.