• Title/Summary/Keyword: Proton Accelerator

Search Result 114, Processing Time 0.018 seconds

Measurement of Neutron Capture Gamma-ray Spectrum of Natural Gold in the keV Energy Region

  • Lee, Jae-Hong;Lee, Sam-Yol;Lee, Sang-Bock;Lee, Jun-Haeng;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.1
    • /
    • pp.45-49
    • /
    • 2007
  • keV-neutron capture gamma-ray spectrum of $^{197}Au$(natural gold) sample have been measured in neutron energy range from 10 to 90 keV using the 3-MV pelletron accelerator of the Research Laboratory for Nuclear Reactors at the Tokyo Institute of Technology. Pulsed keV neutrons were produced from the $^7Li(p,n)^7Be$ reaction by bombarding on the $^7Li$ target with the 1.5-ns bunched proton beam. The incident neutron spectrum on the Au sample was measured by a $^6Li$-glass scintillation detector and TOF method. Capture gamma-rays from Au sample were measured by anti-Compton NaI(TI) spectrometer. Five average neutron energy regions were selected to obtain the neutron capture spectrum. Several gamma-ray peaks in the spectrum were found in the present experiment.

  • PDF

The Design and Construction of the Nuclear Microprobe (핵 마이크로프로브 설계 및 제작)

  • Woo, Hyung-Ju;Kim, Jun-Gon;Choi, Han-Woo;Hong, Wan;Kim, Young-Seok;Lee, Jin-Ho;Kim, Ki-Dong;Yang, Tae-Gun
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.380-386
    • /
    • 2001
  • A nuclear microprobe system with adjustable precision object slits and a magnetic quadrupole doublet was designed by the beam optics simulation using a first order matrix formalism, and installed in a $30^{\circ}$ beam line connected with KIGAM 1.7 MV Tandem VDG Accelerator. Demagnification factors for x and y axis are calculated to be 25 and 4.9, respectively, and a minimum beam spot side is expected to be about 5 $\mu\textrm{m}$ for 3 MeV proton beams with a current of about 1 nA. A multi-purpose octagonal target chamber has been built to facilitate MeV ion-beam analytical techniques of PIXE, RBS, ERDA, and ion beam micro-machining. It contains X-ray and particle detectors, a zoom microscope, a Faraday cup, a 4-axis sample manipulator and a high vacuum pumping system. The system performance of the nuclear microprobe is now being tested, and automatic manipulator control and data acquisition system will be installed for routine applications of micro ion-beam analytical techniques.

  • PDF

Present Status and Future Aspects of Radiation Oncology in Korea (방사선 치료의 국내 현황과 미래)

  • Huh, Seung-Jae
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.211-216
    • /
    • 2006
  • $\underline{Purpose}$: An analysis of the infrastructure for radiotherapy in Korea was performed to establish a baseline plan in 2006 for future development. $\underline{Materials\;and\;Methods}$: The data were obtained from 61 radiotherapy centers. The survey covered the number of radiotherapy centers, major equipment and personnel. Centers were classified into technical level groups according to the IAEA criteria. $\underline{Results}$: 28,789 new patients were treated with radiation therapy in 2004. There were 104 megavoltage devices in 61 institutions, which included 96 linear accelerators, two Cobalt 60 units, three Tomotherapy units, two Cyberknife units and one proton accelerator in 2006. Thirty-five high dose rate remote after-loading systems and 20 CT-simulators were surveyed. Personnel included 132 radiation oncologists, 50 radiation oncology residents, 64 medical physicists, 130 nurses and 369 radiation therapy technologists. All of the facilities employed treatment-planning computers and simulators, among these thirty-two percent (20 facilities) used a CT-simulator. Sixty-six percent (40 facilities) used a PET/CT scanner, and 35% (22 facilities) had the capacity to implement intensity modulated radiation therapy. Twenty-five facilities (41%) were included in technical level 3 group (having one of intensity modulated radiotherapy, stereotactic radiotherapy or intra-operative radiotherapy system). $\underline{Conclusion}$: Radiation oncology in Korea evolved greatly in both quality and quantity recently and demand for radiotherapy in Korea is increasing steadily. The information in this analysis represents important data to develop the future planning of equipment and human resources.

Monte Carlo Simulation of the Carbon Beam Nozzle for the Biomedical Research Facility in RAON (한국형 중이온 가속기 RAON의 의생물 연구시설 탄소 빔 노즐에 대한 Monte Carlo 시뮬레이션)

  • Bae, Jae-Beom;Cho, Byung-Cheol;Kwak, Jung-Won;Park, Woo-Yoon;Lim, Young-Kyung;Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of the Monte Carlo simulation study was to provide the optimized nozzle design to satisfy the beam conditions for biomedical researches in the Korean heavy-ion accelerator, RAON. The nozzle design was required to produce $C^{12}$ beam satisfying the three conditions; the maximum field size, the dose uniformity and the beam contamination. We employed the GEANT4 toolkit in Monte Carlo simulation to optimize the nozzle design. The beams for biomedical researches were required that the maximum field size should be more than $15{\times}15cm^2$, the dose uniformity was to be less than 3% and the level of beam contamination due to the scattered radiation from collimation systems was less than 5% of total dose. For the field size, we optimized the tilting angle of the circularly rotating beam controlled by a pair of dipole magnets at the most upstream of the user beam line unit and the thickness of the scatter plate located downstream of the dipole magnets. The values of beam scanning angle and the thickness of the scatter plate could be successfully optimized to be $0.5^{\circ}$ and 0.05 cm via this Monte Carlo simulation analysis. For the dose uniformity and the beam contamination, we introduced the new beam configuration technique by the combination of scanning and static beams. With the combination of a central static beam and a circularly rotating beam with the tilting angle of $0.5^{\circ}$ to beam axis, the dose uniformity could be established to be 1.1% in $15{\times}15cm^2$ sized maximum field. For the beam contamination, it was determined by the ratio of the absorbed doses delivered by $C^{12}$ ion and other particles. The level of the beam contamination could be achieved to be less than 2.5% of total dose in the region from 5 cm to 17 cm water equivalent depth in the combined beam configuration. Based on the results, we could establish the optimized nozzle design satisfying the beam conditions which were required for biomedical researches.