• Title/Summary/Keyword: Proton Accelerator

Search Result 114, Processing Time 0.035 seconds

Estimating Potential Value of Proton Accelerator in Korea Using Contingent Valuation Method

  • Jeong, Ki-Ho;Kim, Jun-Yeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.387-394
    • /
    • 2006
  • In Korea, a proton linear accelerator complex is being built as a part of the 21st Century Frontier Projects. Contingent valuation method (CVM) is a main evaluation method of nonmarket goods for which markets either do not exist at all or do exist only incompletely. This study shows the method can be applied to the benefit assessment of the proton accelerator complex. Using the discrete choice CVM method, this study estimates the willingness-to-pay (WTP) of a would-be user for the proton accelerator complex as 20,133 won per month.

  • PDF

HIGH POWER, HIGH BRIGHTNESS PROTON ACCELERATORS

  • Lee, Yong-Yung
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.433-446
    • /
    • 2005
  • The development of accelerator science and technology has been accommodating ever increasing demand from scientific community of the beam energy and intensity of proton beams. The use of high-powered proton beams has extended from the traditional application of nuclear and high-energy physics to other applications, including spallation neutron source replacing nuclear reactor, nuclear actinide transmutation, energy amplification reactors. This article attempts to review development of proton accelerator, both linear and circular, and issues related to the proton beam energy, intensity as well as its output power. For related accelerator physics and technical review, one should refer to the recent article in the Reviews of Modem Physics [1]

Calculation of Neutron Energy Distribution from the Components of Proton Therapy Accelerator Using MCNPX (MCNPX를 이용한 양성자 치료기의 구성품에서 발생하는 중성자 에너지 분포계산)

  • Bae, Sang-Il;Shin, Sang-Hwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.917-924
    • /
    • 2019
  • The passive scattering system nozzle of the proton therapy accelerator was simulated to evaluate the neutrons generated by each component in each nozzle by energy. The Monte Carlo N-Particle code was used to implement spread out Bragg peak with proton energy 220 MeV, reach 20 cm, and 6 cm length used in the treatment environment. Among the proton accelerator components, neutrons were the highest in scatterers, and the neutron flux decreased as it moved away from the central flux of the proton. This study can be used as a basic data for the evaluation of the radiation necessary for the maintenance and dismantling of proton accelerators.

Design Study for Pulsed Proton Beam Generation

  • Kim, Han-Sung;Kwon, Hyeok-Jung;Seol, Kyung-Tae;Cho, Yong-Sub
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.189-199
    • /
    • 2016
  • Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

Development of neutron time-of-flight measurement system for 1.7-MV tandem proton accelerator with lithium target

  • Lim, Soobin;Kim, Donghwan;Kang, Jin-Goo;Dang, Jeong-Jeung;Lee, Pilsoo;Kim, Geehyun;Chung, Kyoung-Jae;Hwang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.437-441
    • /
    • 2022
  • In this study, we developed a neutron time-of-flight (nTOF) measurement system for a 1.7-MV tandem proton accelerator with a target covered with 300-nm-thick lithium (Li) layer. With implementation of beam chopping module after its ion source, the accelerator is configured to operate in pulsed-beam mode with a pulse width <50 ns at 20-kHz repetition rate. This enables the gamma flash-type nTOF measurement system to identify the neutron generated with 3-MeV proton beam energy. The nTOF system consists of a 30" cylindrical NaI(Tl) and four stilbene scintillation detectors. The NaI(Tl) scintillator is placed 50 cm from the Li target to measure the time of beam irradiation on the target, and the stilbene detectors are placed 2 and 2.4 m away to measure nTOF at each location. The nTOF system successfully measured the generated neutron energy at irradiated proton energies of 2.6 and 3.0 MeV with an average energy resolution of 15%.

FIRST OPERATING TEST OF THE 700 MHz 1 MW PROTOTYPE KLYSTRON FOR A PROTON ACCELERATOR

  • Ko, Seung-Kook;Lee, Bo-Young;Lee, Kang-Ok;Hong, Jin-Seok;Jeon, Jae-Ha;Chung, Bo-Hyun;Noh, Seung-Jeong;Chung, Kie-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.779-784
    • /
    • 2006
  • The design, manufacturing process, and first operating test of a high power RF source for a proton accelerator are described. A klystron amplifier system has been developed for operation at 700 MHz, 1 MW and is composed of a triode type electron gun, six cavities, an RF output window, a beam collector, and an electromagnet. The prototype klystron was constructed and tested at a reduced duty to produce the designed output RF power.

Development of the Power System Fault Diagnostic Algorithm for the Proton Accelerator Research Center of PEFP (양성자가속기 연구센터 전력계통 고장진단 알고리즘 개발)

  • Mun, Kyeong-Jun;Jeon, Gye-Po;Lee, Seok-Ki;Kim, Jun-Yeon;Jung, W.;Yoo, Suk-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.685-686
    • /
    • 2007
  • This paper presents an application of power system fault diagnostic algorithm for the PEFP Proton Accelerator Research Center using neural network. Proposed fault diagnostic system is constructed by the radial basis function (RBF) neural network because it has the capabilities of the pattern classification and function approximation of any nonlinear function. Proposed system identifies faulted section in the power system based on information about the operation of protection devices such as relays and circuit breakers. In this paper, parameters of the RBF neural networks are tuned by the GA-TS algorithm, which has the global optimal solution searching capabilities. To show the validity of the proposed method, proposed algorithm has been tested with a practical power system in Proton Accelerator Research Center of PEFP.

  • PDF

Status and test results of the HPRF system for PEFP 20MeV linear accelerator

  • Seol, K.T.;Kwon, H.J.;Kim, H.S.;Song, Y.G.;Cho, Y.S.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.10a
    • /
    • pp.915-916
    • /
    • 2005
  • The high power RF system for the PEFP 20MeV proton accelerator composed of the 3MeV RFQ and the 20MeV DTL has been installed. The klystron for the RFQ was tested up to 600kW and operated routinely to drive the RFQ in a pulse mode operation. The klystron for the DTL which consists of 4 tanks was tested up to 800kW in pulse mode operation. The pulse width and repetition rate was 50${\mu}s$ and 1Hz respectively. The high power RF system has been operated to drive each accelerating structure and will be used to accelerate 20MeV proton beam.

  • PDF

Direct Writing Lithography Technique for Semiconductor Fabrication Process Using Proton Beam

  • Kim, Kwan Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.38-41
    • /
    • 2019
  • Proton beam writing is a direct writing lithography technique for semiconductor fabrication process. The advantage of this technique is that the proton beam does not scatter as they travel through the matter and therefore maintain a straight path as they penetrate into the resist. The experiment has been carried out at Accelerator Mass Spectrometry facility. The focused proton beam with the fluence of $100nC/mm^2$ was exposed on the PMMA coated silicon sample to make a pattern on a photo resist. The results show the potential of proton beam writing as an effective way to produce semiconductor fabrication process.