• Title/Summary/Keyword: Protoberberine alkaloid

Search Result 12, Processing Time 0.018 seconds

Determination of Protoberberine Alkaloids in Phellodendri Cortex and Preparation by Spectrophotometric Method (흡광도측정법에 의한 황백과 제제 중 프로토베르베린 알칼로이드의 정량)

  • 엄동옥;정윤철
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.34-38
    • /
    • 2001
  • The Phellodendri Cortex of Phellodendron amurense (Rutaceae) is known to contain a number of isoquinoline alkaloid, and berberine, palmatine, jateorrhizine, phellodendrine and magnoflorine are the major constituents of protoberberine alkaloids. For the determination of protoberberine alkaloids from Phellodendri Cortex and berberine chloride from the preparation, the new spectrophotometric method was developed with a simple and selective sample clean-up using thiocyanatocobaltate[II] complex ion. Samples were extracted with 0.1 mM hydrochloric acid, potassium biphthalate reagent, thiocyanatocobaltate reagent and 1.2-dichloroethane for 60 min. The absorbance of protoberberine alkaloid complexes in 1.2-dichloroethane solution was measured at 625 nm. Calibration curve for berberine was linear over the concentration range of 0.05~0.30 mg/ml 1.2-dichloroethane. The method proved to be rapid, simple and reliable for the determination of protoberberine alkaloids from Phellodendri Cortex and berberine chloride from the preparation.

  • PDF

Synthesis of Benzophenanthridine-Related Alkaloids (벤조펜안드리딘과 관련된 알칼로이드의 합성)

  • Kim, Sin-Kyu;Lee, Hyung-Won;Kim, In-Jong;Lee, Ma-Se
    • YAKHAK HOEJI
    • /
    • v.36 no.3
    • /
    • pp.250-254
    • /
    • 1992
  • Benzo[C]phenanthidine alkaloids were found to exhibit considerably strong antileukemic activies. These alkaloids have been shown to be biosynthesized from the corresponding alkaloids throung an oxidative $C_6-N$ bond cleavage followed by recyclization between $C_6\;and\;C_{13}$ position of the protoberberine. Recently we have achieved the biomimetic transformation of protoberberine alkaloid, berberine into benzo[C]phenanthridine alkaloid, chelerythrine.

  • PDF

Protoberberine Alkaloids and their Reversal Activity of P-gp Expressed Multidrug Resistance (MDR) from the Rhizome of Coptis japonica Makino

  • Min, Yong-Deuk;Yang, Min-Cheol;Lee, Kyu-Ha;Kim, Kyung-Ran;Choi, Sang-Un;Lee, Kang-Ro
    • Archives of Pharmacal Research
    • /
    • v.29 no.9
    • /
    • pp.757-761
    • /
    • 2006
  • Six protoberberine alkaloids were isolated from the chloroform layer of the rhizome of Coptis japonica Makino (Ranunculaceae). The structures of the isolated compounds were determined to be 6-([1,3]dioxolo[4,5-g]isoquinoline-5-carbonyl)-2,3-dimethoxy-benzoic acid methyl ester (1), oxyberberine (2), 8-oxo-epiberberine (3), 8-oxocoptisine (4), berberine (5) and palmatine (6) by physicochemical and spectroscopic methods. The compound 3 (8-oxo-epiberberine) was first isolated from natural sources. The compounds were tested for cytotoxicity against five tumor cell lines in vitro by SRB method, and also tested for the MDR reversal activities. Compound 4 was of significant P-gp MDR inhibition activity with ED50 value $0.018\;{\mu}g/mL$ in MES-SA/DX5 cell and $0.0005\;{\mu}g/mL$ in HCT15 cell, respectively.

General Fragmentations of Alkaloids in Electrospray Ionization Tandem Mass Spectrometry

  • Shim, Hee Jung;Lee, Ji Ye;Kim, Byungjoo;Hong, Jongki
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.79-82
    • /
    • 2013
  • Various types of alkaloids observed in several herbal medicines were analyzed by electrospray ionization tandem mass spectrometry in positive ion mode. In the present study, MS/MS spectralpatterns were investigated for eight-types of alkaloids (aporpine, protoberberine, tetrahydroprotoberberine, benzylisoquinoline, protopine, phthalide, morpine, and bisbenzylisoquinoline). For aporpine- and protoberberine-type alkaloids, main fragmentations occurred at substituted groups on rigid ring structures, not showing ring fusion. Interesting fragmentations due to iminolization and retro-Diels-Alder (RDA) reaction were observed in MS/MS spectra of protopine- and tetrahydroprotobereberine-type alkaloids. Also, several types of fragmentations such as inductive cleavage and ${\alpha}$-cleavage, or bond cleavage between two ring structures were observed depending on their structural characteristics. These fragmentation patterns are expected to allow instant classification of the specific alkaloid type in various MS/MS spectra of alkaloids.

Alkaloidal Components of Chelidonii Fructus (애기똥풀 과실의 Alkaloid 성분)

  • Kim, Min-Soo;Hwang, Bang-Yeon;Choe, Sang-Gil;Lee, Myung-Koo;Ro, Jai-Seup;Lee, Kyong-Soon
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.4
    • /
    • pp.390-393
    • /
    • 2000
  • From the alkaloidal fraction of the fructus of Chelidonium majus, two protoberberine alkaloids and one benzophenanthridine alkaloid were isolated. On the basis of chemical and spectroscopic evidences, the structures of these compounds were identified as chelidonine, coptisine and berberine.

  • PDF

Inhibition of Tyrosine Hydroxylase by Palmatine

  • Lee, Myung-Koo;Zhang, Yong-He;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.258-260
    • /
    • 1996
  • Palmatine, an protoberberine isoquinoline alkaloid, has been found to inhibit dopamine biosynthesis by reducing tyrosine hydroxylase (TH) activity in PC12 cells (Lee and Kim, 1996). We have therefore investigated the effects of palmatine on bovine adrenal TH. Palmatine showed a mild inhibition on bovine adrenal TH (36.4% inhibition at concentration of $200\muM$). Bovine adrenal TH was inhibited competitively by palmatine with a substrate L-tyrosine. The Ki value was found to be 0.67 mM. This result suggests that the inhibition of TH activity by palmatine may be partially involved in the reduction of dopamine biosynthesis in PC12 cells.

  • PDF

Studies on the Constituents of Berberis amurensis Ruprecht (매발톱나무의 성분에 관한 연구)

  • Lee, Hyang-Yi;Kim, Chong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.4
    • /
    • pp.257-263
    • /
    • 1997
  • Berberis amurensis Ruprecht(Berberidaceae) is a medicinal plant indigenous to the middle and northern part of Korean peninsula. The woody parts of this plant have been used for the ocular, peptic and intestinal disorders. The stems of this plants were extracted with MeOH and the MeOH extract was partitioned between organic phases and water layer, successively to fractionated quarternary alkaloids. The acetone-soluble part of guarternary alkaloidal fraction had antibacterial activities and it contained four protoberberine alkaloids such as palmatine(I), Berberine(II), Jatrorrhizine(III) and coptisine(IV), and one aporphine alkaloid, magnoflorine(V). Although the isolations of the compounds I, II, IIII, IV and V from different sources were reported, this is the first report that Berberis amurensis contained the compounds. When the contents of compound I(palmatine) and II(berberine) were quantified and compared with those of other plant parts, cortex contained higher palmatine and berberine than any other part of the plant.

  • PDF

HPLC Separation of Isoquinoline Alkaloids for Quality Control of Corydalis species

  • Kim, Eun-Kyung;Jeong, Eun-Kyung;Han, Sang-Beom;Jung, Jee-H.;Hong, Jong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3597-3602
    • /
    • 2011
  • A simple and rapid analytical method was developed for the determination of eight isoquinoline alkaloids in Corydalis species. Eight isoquinoline alkaloids, including 2 aporphine alkaloids (isocorydine and glaucine) and 6 protoberberine alkaloids (coptisine, palmatine, berberine, canadine, corydaline, and tetrahydrocoptisine) were used as chemical markers which have a various biological activity and determined for quality control of Corydalis (C.) species (C. ternata, C. yanhusuo, and C. decumbens). To evaluate the quality of these herbal medicines, LC chromatographic separation of alkaloids were preferentially investigated on reversed-phase C18 column with pH variation and composition of mobile phase. In addition, the separation of these alkaloids in herbal extracts was found to be significantly affected on mobile phase composition using gradient elution. Especially for C. yanhusuo extract, berberine was seriously interfered with other alkaloid extracted from sample matrix when mobile phase composition was not optimized. As results, these compounds were successfully separated within 28 min using 10 mM ammonium acetate containing 0.2% triethylamine (adjusted at pH 5.0) as a mobile phase with gradient elution. On the basis of optimized HPLC conditions, 23 different Corydalis species samples were analyzed for the determination of alkaloid levels. In addition, principal component analysis (PCA) combined with the chromatographic data could be successfully classified the different geographic origin samples.

DNA Binding Mode of the Isoquinoline Alkaloid Berberine with the Deoxyoligonucleotide d(GCCGTCGTTTTACA)2

  • Park, Hye-Seo;Kim, Eun-Hee;Sung, Yoon-Hui;Kang, Mi-Ran;Chung, In-Kwon;Cheong, Chae-Joon;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.539-544
    • /
    • 2004
  • The ability of protoberberine alkaloids, berberine and berberrubine, to act as topoisomerase II poisons is linked to the anti-cancer activity. Minor alterations in structure have a significant effect on their relative activity. Berberine, which has methoxy group at the 19-position, is significantly less potent than berberrubine. Several observations support non-specific binding to HP14 by the berberine: (i) nonspecific upfield changes in $^1H$ chemical shift for protons of the berberine; (ii) the broadening of imino protons of HP14 upon binding of the berberine; (iii) very small increases in duplex melting temperature in the presence of the berberine. Our results reveal that substitution of a hydroxyl group to a methoxy group on the 19-position, thereby converting the berberrubine to the berberine is associated with a non-specific DNA binding affinity and a reduced topoisomerase II poisoning. The presence of a bulky 19-methoxy substituent decreases intercalating properties of berberine and makes it inactive as topoisomerase II poison.