• Title/Summary/Keyword: Proteomic approaches

Search Result 32, Processing Time 0.019 seconds

Altered Protein Expression in Ovarian and Cervical Cancer Cells by the Treatment of Extracts from Euonymus alatus Sieb, Oldenlandia diffusa (Willd.) Roxburgh, and Orostachys japonicus A. Berger (귀전우, 백화사설초, 와송 추출물을 처치한 난소암과 자궁경부암 세포에서의 단백질 발현 변화)

  • Kim, Kyung-Soon;Yea, Sung-Chul;Yoo, Byong-Chul;Cho, Chong-Kwan;Lee, Yeon-Weol;Yoo, Hwa-Seung
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.33-42
    • /
    • 2011
  • Background : Despite recent advances in cancer management, prognosis of ovarian cancer is poor. Anticancer effects of herbal medicine, such as Euonymus alatus Sieb, Oldenlandia diffusa (Willd.) Roxburgh, and Orostachys japonicus A. Berger, have been reported in treatment of ovarian and cervical cancers, but the systematic approaches to explain their molecular mechanism(s) have not yet been established. Objectives : To establish a basis of understanding for anti-cancer mechanisms of herbal medicine, we profiled protein expression in human ovarian and cervical cancer cells treated with the extracts from Euonymus alatus Sieb, Oldenlandia diffusa (Willd.) Roxburgh and Orostachys japonicus A. Berger. Methods : Human ovarian cancer cell line NIH:OVCAR-3, and human cervical cancer cell line HeLa were employed in the present study. Whole protein was obtained from the cells harvested at 48 hours after the treatment with herbal water-extract, and analyzed by 2DE-based proteomic approach. Results : Various changes of protein expression induced by the herbal treatment were monitored : down-regulation of molecular chaperone (calreticulin variant), glycolytic enzymes (D-3-phosphoglycerate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase and alpha-enolase), RNA processing molecules (hnRNP A2/B1), and antioxidant protein (peroxiredoxin 1). Conclusions : Repression of glycolysis has been accepted as the mechanism to increase anticancer reagent's effect. Thus, down-regulation of glycolytic enzymes by the herbal extracts suggested a possible synergistic effect of herbs in the presence of platinum-based therapeutics. In further study, as well as the synergistic effect of the herbs, it has to be further validated whether artificial regulation of hnRNP A2/B1 in ovarian cancer cells affects various cancer survival factors, since RNA processing can be interrupted by deranged expression of hnRNP subtypes, and it results in an inhibition of cancer cell growth.

Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

  • Jung, Yuchae;Park, Heejoo;Zhao, Hui-Yuan;Jeon, Raok;Ryu, Jae-Ha;Kim, Woo-Young
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.547-553
    • /
    • 2014
  • Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and $TGF{\beta}$ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.