• Title/Summary/Keyword: Protein-filled ER

Search Result 3, Processing Time 0.02 seconds

Terminal Dilation and Transformation of the Protein-filled ER to Form Protein Bodies in Pea (Pisum sativum L. var, exzellenz) Cotyledons (완두 자엽에서 소포체 말단의 팽창에 의한 단백과립 발달)

  • Jeong, Byung-Kap
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.499-509
    • /
    • 1999
  • Accumulations of the storage proteins in protein storage vacuole and the differentiation of protein bodies from protein-filled ER in developing pea cotyledons have been investigated using conventional and immunoelectron microscopy. To improve the fixation quality, single cells separated enzymatically from sliced cotyledons were used. At early stages of seed development osmiophilic protein accumulates in rER lumen were observed quite often. This protein-filled ER cisternae were differentiated into cytoplasmic protein bodies at late stage by the process called terminal dilations which have been considered a principal route of the formation of cytoplasmic protein bodies somewhat later in seed maturation. Immunocytochemical labellings of the vicilin and legumin show that presence of vicilin on both of the cytoplasmic PB and PD, but limited presence of legumin only on the cytoplasmic PB at intermediate stage of seed development. Immunogold labellings of Bip, ER retention protein, were observed on the inner periphery of protein deposits in protein storage vacuole. This result was regarded that Bip can recognize and retrieve misfolded protein during active accumulation of storage protein to the PD in PSV.

  • PDF

Immunocytochemical Investigation on the Intracisternal Accumulations of Storage Protein in Pea Cotyledon Cells (완두 자엽세포의 소포체 내강에 축적된 저장 단백질에 대한 면역세포화학적 연구)

  • Jeong, Byung-Kap;Park, Hong-Duok
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.199-206
    • /
    • 2001
  • In 1980s, the fragmentation or subdivision of protein deposits at the periphery of protein storage vacuole was suggested as the only route of PB development in pea cotyledon cells. Since then, other independant processes such as terminal dilation , transformation and de novo development have been discussed as alternative routes for PB development, and today, these multiple mechanisms of PB development are accepted as a result of active investigations. For analysis of the protein accumulations in the ER cisternae during seed development, immunocytochemical gold labellings were applyed on the single cells separated by enzymatic digestion from cotyledon tissue. Anti-legumin labellings at the early stage, and anti-vicilin labellings at the intermediate stage were observed on the protein-filled ER. The $\alpha-Tip$, which is the ER retention protein, was labelled somewhat at late stage, and PPase, a sort of tonoplast membrane protein, was labelled at early stage.

  • PDF