Foot-and-Mouth Disease (FMD) is a highly contagious trans-boundary viral disease caused by FMD virus, which causes huge economic losses. FMDV infects cloven hoofed (two-toed) mammals such as cattle, sheep, goats, pigs and various wildlife species. To control the FMDV, it is necessary to understand the life cycle and the pathogenesis of FMDV in host. Especially, the protein-protein interaction between FMDV and host will help to understand the survival cycle of viruses in host cell and establish new therapeutic strategies. However, the computational approach for protein-protein interaction between FMDV and pig hosts have not been applied to studies of the onset mechanism of FMDV. In the present work, we have performed the prediction of the pig's proteins which interact with FMDV based on RNA-Seq data, protein sequence, and structure information. After identifying the virus-host interaction, we looked for meaningful pathways and anticipated changes in the host caused by infection with FMDV. A total of 78 proteins of pig were predicted as interacting with FMDV. The 156 interactions include 94 interactions predicted by sequence-based method and the 62 interactions predicted by structure-based method using domain information. The protein interaction network contained integrin as well as STYK1, VTCN1, IDO1, CDH3, SLA-DQB1, FER, and FGFR2 which were related to the up-regulation of inflammation and the down-regulation of cell adhesion and host defense systems such as macrophage and leukocytes. These results provide clues to the knowledge and mechanism of how FMDV affects the host cell.
기계학습(maching learning)은 경험을 통한 테이터 관측으로부터 스스로 성능을 향상할 수 있는 컴퓨터를 연구하는 인공지능(artificial intelligence)의 한 연구분야이다. 최근 들어 기계학습은 Bioinformatics 분야에서 생명과학 데이터마이닝을 위한 하나의 핵심기술로 부상하고 있다.(중략)
단백질의 삼차원 구조를 단백질의 국부적 구조인 단백질 조각의 일차원적 나열로 표현하면, 단백질 구조의 분석, 모델링, 탐색, 예측 등에 효과적으로 응용될 수 있다. 본 논문에서는 자연 상태의 단백질 구조를 정확하게 나타낼 수 있는 단백질 조각 라이브러리를 구성하기 위하여, 대규모 단백질 구조 자료를 이용 할 수 있는 거리 척도들의 효과적인 조합을 조사하였다. 단백질 조각 라이브러리를 구성하기 위해 군집화를 사용하였다. 초기 군집화 단계에서는 가장 계산량이 작은 내부 알파탄소간 거리를 사용하였고, 군집의 확장단계에서는 내부 알파탄소간 거리, 비네-코시거리와 평균 제곱근 오차를 조합하여 사용하였다. 제안한 거리 척도의 조합으로 대규모 자료를 이용하여 단백질 조각 라이브러리를 구성하였다. 구성된 라이브러리를 사용하여 단백질 구조를 나타내는 실험에서 작은 평균 제곱근 오차가 발생함을 확인하였다.
Predicting protein loop structures is an important modeling problem since protein loops are often involved in diverse biological functions by participating in enzyme active sites, ligand binding sites, etc. However, loop structure prediction is difficult even when structures of homologous proteins are known due to large sequence and structure variability among loops of homologous proteins. Therefore, an ab initio approach is necessary to solve loop modeling problems. One of the difficulties in the development of ab initio loop modeling method is to derive an accurate scoring function that closely approximates the true free energy function. In particular, entropy as well as energy contribution have to be considered adequately for loops because loops tend to be flexible compared to other parts of protein. In this study, the contribution of conformational entropy is considered in scoring loop conformations by employing "colony energy" which was previously proposed to estimate the free energy for an ensemble of conformations. Loop conformations were generated by using two EDISON_Chem programs GalaxyFill and GalaxySC, and colony energy was designed for this sampling by tuning relevant parameters. On a test set of 40 loops, the accuracy of predicted loop structure improved on average by scoring with the colony energy compared to scoring by energy alone. In addition, high correlation between colony energy and deviation from the native structure suggested that more extensive sampling can further improve the prediction accuracy. In another test on 6 ligand-binding loops that show conformational changes by ligand binding, both ligand-free and ligand-bound states could be identified by using colony energy when no information on the ligand-bound conformation is used.
Protein phosphatase manganese dependent 1D (PPM1D) is one of the Ser/Thr protein phosphatases belongs to the PP2C family. They play an important role in cancer tumorigenesis of various tumors including neuroblastoma, pancreatic adenocarcinoma, medulloblastoma, breast cancer, prostate cancer and ovarian cancer. Even though PPM1D is involved in the pathophysiology of various tumors, the three dimensional protein structure is still unknown. Hence in the present study, homology modelling of PPM1D was performed. 20 different models were modelled using single- and multiple-template based homology modelling and validated using different techniques. Best models were selected based on the validation. Three models were selected and found to have similar structures. The predicted models may be useful as a tool in studying the pathophysiological role of PPM1D.
현재 가장 많이 사용되는 단백질 구조 예측 방법은 비교 모델링 (comparative modeling) 방법이다. 비교 모델링 방법에서의 정확도를 높이기 위해서는 alignment의 정확도 역시 매우 필수적으로 필요하다. 비교 모델링 과정 중의 fold-recognition 단계에서 alignment의 정확도에 의해 template을 고르는 방법은 단지 가장 비슷한 template을 선택하는 방법에 비해 주목을 받지 못하고 있다. 최근에는 두 가지의 alignment에 사이의 shift 정보를 바탕으로 한 shift score라는 수치가 alignment의 성능을 표현하기 위해서 개발되었다. 우리는 더 정확한 구조 예측의 첫걸음이 될 수 있는 shift score를 예측하는 방법을 개발하였다. Shift score를 예측하기 위해 support vector regression (SVR)이 사용되었다. 사전에 구축된 라이브러리 안의 길이가 n 인 template과 구조를 알고 싶은 query 단백질 사이의 alignment는 n+2 차원의 input 벡터로 변환된다. Structural alignment가 가장 좋은 alignment로 가정되었고 SVR은 query 단백질과 template 단백질의 structural alignment과 profile-profile alignment 사이의 shift score를 예측하도록 training 되었다. 예측 정확도는 Pearson 상관계수로 측정되었다. Training 된 SVR은 실제의 shift score와 예측된 shift score 사이에 0.80의 Pearson 상관계수를 갖는 정도로 예측하였다.
단백질의 이차구조는 단백질의 진화, 구조, 기능을 연구하는데 중요한 정보이다. 단백질 서열 정보만을 이용하여 단백질의 이차 구조를 예측하는 분야에 심층 학습 방법들이 최근 들어 활발히 적용되고 있다. 이러한 방법에서 널리 사용되는 입력은 단백질 서열을 변환하여 만들어진 단백질 프로파일이다. 본 논문에서는 효과적인 단백질 프로파일을 얻기 위하여 단백질 서열 탐색 방법으로 PSI-BLAST와 더불어서 HHblits를 사용하였다. 단백질 프로파일의 구성에 사용되는 상동 단백질 서열을 결정하기 위한 유사도 문턱치와 상동 단백질 서열 정보를 반복적으로 사용하는 회수를 조절하였다. 합성곱 신경망과 순환 신경망을 사용하여 단백질 이차구조를 예측하였는데, 진화적 정보를 한번만 추가하여 만들어진 단백질 프로파일이 효과적이었다.
비교유전체학의 주요 주제 중 유전자서열을 분류하고 단백질기능을 예측하는 연구가 있으며, 이를 위해 단백질 구조, 공통서열 및 바인딩 위치 예측등의 방법과 함께, 전유전체 서열에서 구해지는 유사도 그래프를 분석해 상동유전자를 검색하는 계산학적인 접근방법이 있다. 유사도그래프를 사용한 방법은 서열에 대한 기존 지식에 의존하지 않는 장점이 있지만 유사도 하한값과 같은 주관적인 임계값이 필요한 단점이 있다. 본 논문에서는 반복적으로 그래프를 분해하는 이전의 방법을 일반화시켜, 유사도 그래프에 기반한 유전자 서열군집분석 방법론과 객관적이고 안정적인 파라미터 임계값 계산 방법을 제안한다. 제시된 방법으로 알려진 미생물 유전체 서 열을 분석하여 이전의 방법인 BAG 알고리즘 결과와 비교했다.
HP0827 has two RNP motif which is a very common protein domain involved in recognition of a wide range of ssRNA/DNA.We acquired 3D NMR spectra of HP0827 which shows well dispersed and homogeneous signals which allows us to assign 98% of all $^1H_N$, $^{15}N$, $^{13}C_{\alpha}$, $^{13}C_{\beta}$ and $^{13}C$=O resonances and 90% of all sidechain resonances. The sequence-specific backbone resonance assignment of HP0827 can be used to gain deeper insights into the nucleic acids binding specificity of HP0827 in the future study. Here, we report secondary structure prediction of HP0827 derived from NMR data. Additionally, ssRNA/DNA binding assay studies was also conducted. This study might provide a clue for exact function of HP0827 based on structure and sequence.
모노머 단백질의 상호작용 사이트 예측은 기능을 알지 못하는 단백질에 대해서 이것과 상호작용하는 단백질로부터 기능을 예측하거나 단백질 도킹을 위한 검색 공간의 감소에 중요한 역할을 한다. 그러나 상호작용사이트 예측은 대부분 단백질 상호작용이 세포 내에서 순간적 반응에 일어나는 약한 상호작용으로 실험에 의한 3차원 결정 구조 식별의 어려움이 따르며 이로 인해 3차원의 복합체 데이터가 제한적으로 양산된다. 이 논문에서는 모노머 단백질의 3차원 패치 계산을 통하여 구조가 알려진 복합체의 상호작용사이트와 비상호작용사이트에 대한 패치 속성을 추출하고 이를 기반으로 Support Vector Machine (SVM) 분류기법을 이용한 예측 모델 개발을 제시한다. 타겟 클래스의 데이터 불균형 문제 해결을 위해 under-sampling 기법을 이용한다. 사용된 패치속성은 2차 구조 요소와 아미노산 구성으로부터 총 9개가 추출된다. 147개의 단백질 복합체에 대해서 10 fold cross validation을 통해서 다양한 분류모델의 성능 평가를 하였다. 평가한 분류 모델 중 SVM은 92.7%의 높은 정확성을 보이고 이를 이용하여 분류 모델을 개발하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.