• 제목/요약/키워드: Protein structure prediction

검색결과 105건 처리시간 0.022초

Computational approaches for prediction of protein-protein interaction between Foot-and-mouth disease virus and Sus scrofa based on RNA-Seq

  • Park, Tamina;Kang, Myung-gyun;Nah, Jinju;Ryoo, Soyoon;Wee, Sunghwan;Baek, Seung-hwa;Ku, Bokkyung;Oh, Yeonsu;Cho, Ho-seong;Park, Daeui
    • 한국동물위생학회지
    • /
    • 제42권2호
    • /
    • pp.73-83
    • /
    • 2019
  • Foot-and-Mouth Disease (FMD) is a highly contagious trans-boundary viral disease caused by FMD virus, which causes huge economic losses. FMDV infects cloven hoofed (two-toed) mammals such as cattle, sheep, goats, pigs and various wildlife species. To control the FMDV, it is necessary to understand the life cycle and the pathogenesis of FMDV in host. Especially, the protein-protein interaction between FMDV and host will help to understand the survival cycle of viruses in host cell and establish new therapeutic strategies. However, the computational approach for protein-protein interaction between FMDV and pig hosts have not been applied to studies of the onset mechanism of FMDV. In the present work, we have performed the prediction of the pig's proteins which interact with FMDV based on RNA-Seq data, protein sequence, and structure information. After identifying the virus-host interaction, we looked for meaningful pathways and anticipated changes in the host caused by infection with FMDV. A total of 78 proteins of pig were predicted as interacting with FMDV. The 156 interactions include 94 interactions predicted by sequence-based method and the 62 interactions predicted by structure-based method using domain information. The protein interaction network contained integrin as well as STYK1, VTCN1, IDO1, CDH3, SLA-DQB1, FER, and FGFR2 which were related to the up-regulation of inflammation and the down-regulation of cell adhesion and host defense systems such as macrophage and leukocytes. These results provide clues to the knowledge and mechanism of how FMDV affects the host cell.

Networks for Protein Structure Prediction

  • 장병탁
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2002년도 제9회 학술 발표회 프로그램과 논문초록
    • /
    • pp.13-13
    • /
    • 2002
  • 기계학습(maching learning)은 경험을 통한 테이터 관측으로부터 스스로 성능을 향상할 수 있는 컴퓨터를 연구하는 인공지능(artificial intelligence)의 한 연구분야이다. 최근 들어 기계학습은 Bioinformatics 분야에서 생명과학 데이터마이닝을 위한 하나의 핵심기술로 부상하고 있다.(중략)

  • PDF

내부 알파탄소간 거리와 비네-코시 거리를 사용한 대규모 단백질 조각 라이브러리 구성 (Construction of Large Library of Protein Fragments Using Inter Alpha-carbon Distance and Binet-Cauchy Distance)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제19권12호
    • /
    • pp.3011-3016
    • /
    • 2015
  • 단백질의 삼차원 구조를 단백질의 국부적 구조인 단백질 조각의 일차원적 나열로 표현하면, 단백질 구조의 분석, 모델링, 탐색, 예측 등에 효과적으로 응용될 수 있다. 본 논문에서는 자연 상태의 단백질 구조를 정확하게 나타낼 수 있는 단백질 조각 라이브러리를 구성하기 위하여, 대규모 단백질 구조 자료를 이용 할 수 있는 거리 척도들의 효과적인 조합을 조사하였다. 단백질 조각 라이브러리를 구성하기 위해 군집화를 사용하였다. 초기 군집화 단계에서는 가장 계산량이 작은 내부 알파탄소간 거리를 사용하였고, 군집의 확장단계에서는 내부 알파탄소간 거리, 비네-코시거리와 평균 제곱근 오차를 조합하여 사용하였다. 제안한 거리 척도의 조합으로 대규모 자료를 이용하여 단백질 조각 라이브러리를 구성하였다. 구성된 라이브러리를 사용하여 단백질 구조를 나타내는 실험에서 작은 평균 제곱근 오차가 발생함을 확인하였다.

Study of protein loop conformational changes by free energy estimation using colony energy

  • Kang, Beom Chang;Lee, Gyu Rie;Seok, Chaok
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.63-74
    • /
    • 2014
  • Predicting protein loop structures is an important modeling problem since protein loops are often involved in diverse biological functions by participating in enzyme active sites, ligand binding sites, etc. However, loop structure prediction is difficult even when structures of homologous proteins are known due to large sequence and structure variability among loops of homologous proteins. Therefore, an ab initio approach is necessary to solve loop modeling problems. One of the difficulties in the development of ab initio loop modeling method is to derive an accurate scoring function that closely approximates the true free energy function. In particular, entropy as well as energy contribution have to be considered adequately for loops because loops tend to be flexible compared to other parts of protein. In this study, the contribution of conformational entropy is considered in scoring loop conformations by employing "colony energy" which was previously proposed to estimate the free energy for an ensemble of conformations. Loop conformations were generated by using two EDISON_Chem programs GalaxyFill and GalaxySC, and colony energy was designed for this sampling by tuning relevant parameters. On a test set of 40 loops, the accuracy of predicted loop structure improved on average by scoring with the colony energy compared to scoring by energy alone. In addition, high correlation between colony energy and deviation from the native structure suggested that more extensive sampling can further improve the prediction accuracy. In another test on 6 ligand-binding loops that show conformational changes by ligand binding, both ligand-free and ligand-bound states could be identified by using colony energy when no information on the ligand-bound conformation is used.

  • PDF

Protein Phosphatase 1D (PPM1D) Structure Prediction Using Homology Modeling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제9권1호
    • /
    • pp.35-40
    • /
    • 2016
  • Protein phosphatase manganese dependent 1D (PPM1D) is one of the Ser/Thr protein phosphatases belongs to the PP2C family. They play an important role in cancer tumorigenesis of various tumors including neuroblastoma, pancreatic adenocarcinoma, medulloblastoma, breast cancer, prostate cancer and ovarian cancer. Even though PPM1D is involved in the pathophysiology of various tumors, the three dimensional protein structure is still unknown. Hence in the present study, homology modelling of PPM1D was performed. 20 different models were modelled using single- and multiple-template based homology modelling and validated using different techniques. Best models were selected based on the validation. Three models were selected and found to have similar structures. The predicted models may be useful as a tool in studying the pathophysiological role of PPM1D.

단백질 서열정렬 정확도 예측을 위한 새로운 방법 (A new method to predict the protein sequence alignment quality)

  • 이민호;정찬석;김동섭
    • Bioinformatics and Biosystems
    • /
    • 제1권1호
    • /
    • pp.82-87
    • /
    • 2006
  • 현재 가장 많이 사용되는 단백질 구조 예측 방법은 비교 모델링 (comparative modeling) 방법이다. 비교 모델링 방법에서의 정확도를 높이기 위해서는 alignment의 정확도 역시 매우 필수적으로 필요하다. 비교 모델링 과정 중의 fold-recognition 단계에서 alignment의 정확도에 의해 template을 고르는 방법은 단지 가장 비슷한 template을 선택하는 방법에 비해 주목을 받지 못하고 있다. 최근에는 두 가지의 alignment에 사이의 shift 정보를 바탕으로 한 shift score라는 수치가 alignment의 성능을 표현하기 위해서 개발되었다. 우리는 더 정확한 구조 예측의 첫걸음이 될 수 있는 shift score를 예측하는 방법을 개발하였다. Shift score를 예측하기 위해 support vector regression (SVR)이 사용되었다. 사전에 구축된 라이브러리 안의 길이가 n 인 template과 구조를 알고 싶은 query 단백질 사이의 alignment는 n+2 차원의 input 벡터로 변환된다. Structural alignment가 가장 좋은 alignment로 가정되었고 SVR은 query 단백질과 template 단백질의 structural alignment과 profile-profile alignment 사이의 shift score를 예측하도록 training 되었다. 예측 정확도는 Pearson 상관계수로 측정되었다. Training 된 SVR은 실제의 shift score와 예측된 shift score 사이에 0.80의 Pearson 상관계수를 갖는 정도로 예측하였다.

  • PDF

단백질 이차 구조 예측을 위한 단백질 프로파일의 성능 비교 (A Performance Comparison of Protein Profiles for the Prediction of Protein Secondary Structures)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.26-32
    • /
    • 2018
  • 단백질의 이차구조는 단백질의 진화, 구조, 기능을 연구하는데 중요한 정보이다. 단백질 서열 정보만을 이용하여 단백질의 이차 구조를 예측하는 분야에 심층 학습 방법들이 최근 들어 활발히 적용되고 있다. 이러한 방법에서 널리 사용되는 입력은 단백질 서열을 변환하여 만들어진 단백질 프로파일이다. 본 논문에서는 효과적인 단백질 프로파일을 얻기 위하여 단백질 서열 탐색 방법으로 PSI-BLAST와 더불어서 HHblits를 사용하였다. 단백질 프로파일의 구성에 사용되는 상동 단백질 서열을 결정하기 위한 유사도 문턱치와 상동 단백질 서열 정보를 반복적으로 사용하는 회수를 조절하였다. 합성곱 신경망과 순환 신경망을 사용하여 단백질 이차구조를 예측하였는데, 진화적 정보를 한번만 추가하여 만들어진 단백질 프로파일이 효과적이었다.

녹섹(NOGSEC): A NOnparametric method for Genome SEquence Clustering (NOGSEC: A NOnparametric method for Genome SEquence Clustering)

  • 이영복;김판규;조환규
    • 미생물학회지
    • /
    • 제39권2호
    • /
    • pp.67-75
    • /
    • 2003
  • 비교유전체학의 주요 주제 중 유전자서열을 분류하고 단백질기능을 예측하는 연구가 있으며, 이를 위해 단백질 구조, 공통서열 및 바인딩 위치 예측등의 방법과 함께, 전유전체 서열에서 구해지는 유사도 그래프를 분석해 상동유전자를 검색하는 계산학적인 접근방법이 있다. 유사도그래프를 사용한 방법은 서열에 대한 기존 지식에 의존하지 않는 장점이 있지만 유사도 하한값과 같은 주관적인 임계값이 필요한 단점이 있다. 본 논문에서는 반복적으로 그래프를 분해하는 이전의 방법을 일반화시켜, 유사도 그래프에 기반한 유전자 서열군집분석 방법론과 객관적이고 안정적인 파라미터 임계값 계산 방법을 제안한다. 제시된 방법으로 알려진 미생물 유전체 서 열을 분석하여 이전의 방법인 BAG 알고리즘 결과와 비교했다.

1H, 15N and 13C resonance assignment and secondary structure prediction of ss-DNA binding protein 12RNP2 precursor, HP0827 from Helicobacter pylori

  • Jang, Sun-Bok;Ma, Chao;Chandan, Pathak Chinar;Kim, Do-Hee;Lee, Bong-Jin
    • 한국자기공명학회논문지
    • /
    • 제15권1호
    • /
    • pp.69-79
    • /
    • 2011
  • HP0827 has two RNP motif which is a very common protein domain involved in recognition of a wide range of ssRNA/DNA.We acquired 3D NMR spectra of HP0827 which shows well dispersed and homogeneous signals which allows us to assign 98% of all $^1H_N$, $^{15}N$, $^{13}C_{\alpha}$, $^{13}C_{\beta}$ and $^{13}C$=O resonances and 90% of all sidechain resonances. The sequence-specific backbone resonance assignment of HP0827 can be used to gain deeper insights into the nucleic acids binding specificity of HP0827 in the future study. Here, we report secondary structure prediction of HP0827 derived from NMR data. Additionally, ssRNA/DNA binding assay studies was also conducted. This study might provide a clue for exact function of HP0827 based on structure and sequence.

SVM 모델을 이용한 3차원 패치 기반 단백질 상호작용 사이트 예측기법 (Prediction of Protein-Protein Interaction Sites Based on 3D Surface Patches Using SVM)

  • 박성희
    • 정보처리학회논문지D
    • /
    • 제19D권1호
    • /
    • pp.21-28
    • /
    • 2012
  • 모노머 단백질의 상호작용 사이트 예측은 기능을 알지 못하는 단백질에 대해서 이것과 상호작용하는 단백질로부터 기능을 예측하거나 단백질 도킹을 위한 검색 공간의 감소에 중요한 역할을 한다. 그러나 상호작용사이트 예측은 대부분 단백질 상호작용이 세포 내에서 순간적 반응에 일어나는 약한 상호작용으로 실험에 의한 3차원 결정 구조 식별의 어려움이 따르며 이로 인해 3차원의 복합체 데이터가 제한적으로 양산된다. 이 논문에서는 모노머 단백질의 3차원 패치 계산을 통하여 구조가 알려진 복합체의 상호작용사이트와 비상호작용사이트에 대한 패치 속성을 추출하고 이를 기반으로 Support Vector Machine (SVM) 분류기법을 이용한 예측 모델 개발을 제시한다. 타겟 클래스의 데이터 불균형 문제 해결을 위해 under-sampling 기법을 이용한다. 사용된 패치속성은 2차 구조 요소와 아미노산 구성으로부터 총 9개가 추출된다. 147개의 단백질 복합체에 대해서 10 fold cross validation을 통해서 다양한 분류모델의 성능 평가를 하였다. 평가한 분류 모델 중 SVM은 92.7%의 높은 정확성을 보이고 이를 이용하여 분류 모델을 개발하였다.