• 제목/요약/키워드: Protein phosphorylation

검색결과 1,553건 처리시간 0.031초

도라지 잎 에탄올 추출물의 주요 성분 분석 및 마우스 대식세포와 인체 폐암세포에서 항염효과 (Analysis of Major Constituents of an Ethanol Extract of Platycodon Grandiflorum Leaves and Protective Effects on Inflammation in Murine Macrophage and Human Lung Carcinoma Cells)

  • 이정민;배병준;최지림;정영신
    • 한국식품영양학회지
    • /
    • 제37권2호
    • /
    • pp.110-122
    • /
    • 2024
  • This study investigated major constituents and anti-inflammatory effects of an ethanol extract of Platycodon grandiflorum leaves. Through HPLC analysis, chlorogenic acid and luteolin-7-O-glucoside were identified as predominant constituents in the ethanol extract. Their anti-inflammatory effects were evaluated using murine macrophage (RAW 264.7 cells) and human lung carcinoma cells (NCI-H292 & A549). The ethanol extract significantly (p<0.01) inhibited the production of nitrite, interleukin-6 (IL-6), and prostaglandin E2 (PGE2) induced by lipopolysaccharide (LPS) in RAW 264.7 cells. Furthermore, the ethanol extract suppressed the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) proteins in RAW 264.7 cells stimulated with LPS. In NCI-H292 and A549 cells, treatment with the ethanol extract significantly (p<0.05) decreased levels of pro-inflammatory cytokines IL-6 and IL-8 induced by IL-1β. The phosphorylation of ERK rather than JNK in the mitogen-activated protein kinase signaling pathway was observed to be a more important mediator in the down-regulation of pro-inflammatory cytokines in NCI-H292 cells. These findings suggest that the ethanol extract of Platycodon grandiflorum leaves containing luteolin-7-O-glucoside exhibits promising anti-inflammatory properties.

Glucosamine increases macrophage lipid accumulation by regulating the mammalian target of rapamycin signaling pathway

  • Sang-Min Kim;Dong Yeol Kim;Jiwon Park;Young-Ah Moon;Inn-Oc Han
    • BMB Reports
    • /
    • 제57권2호
    • /
    • pp.92-97
    • /
    • 2024
  • Elevated blood glucose is associated with an increased risk of atherosclerosis. Data from the current study showed that glucosamine (GlcN), a normal glucose metabolite of the hexosamine biosynthetic pathway (HBP), promoted lipid accumulation in RAW264.7 macrophage cells. Oleic acid- and lipopolysaccharide (LPS)-induced lipid accumulation was further enhanced by GlcN in RAW264.7 cells, although there was no a significant change in the rate of fatty acid uptake. GlcN increased acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), scavenger receptor class A, liver X receptor, and sterol regulatory element-binding protein-1c (SREBP-1c) mRNA expression, and; conversely, suppressed ATP-binding cassette transporter A1 (ABCA-1) and ABCG-1 expression. Additionally, GlcN promoted O-GlcNAcylation of nuclear SREBP-1 but did not affect its DNA binding activity. GlcN stimulated phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Rapamycin, a mTOR-specific inhibitor, suppressed GlcN-induced lipid accumulation in RAW264.7 cells. The GlcN-mediated increase in ACC and FAS mRNA was suppressed, while the decrease in ABCA-1 and ABCG-1 by GlcN was not significantly altered by rapamycin. Together, our results highlight the importance of the mTOR signaling pathway in GlcN-induced macrophage lipid accumulation and further support a potential link between mTOR and HBP signaling in lipogenesis.

SARS-CoV-2 Infection Induces HMGB1 Secretion Through Post-Translational Modification and PANoptosis

  • Man Sup Kwak;Seoyeon Choi;Jiseon Kim;Hoojung Lee;In Ho Park;Jooyeon Oh;Duong Ngoc Mai;Nam-Hyuk Cho;Ki Taek Nam;Jeon-Soo Shin
    • IMMUNE NETWORK
    • /
    • 제23권3호
    • /
    • pp.25.1-25.17
    • /
    • 2023
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces excessive pro-inflammatory cytokine release and cell death, leading to organ damage and mortality. High-mobility group box 1 (HMGB1) is one of the damage-associated molecular patterns that can be secreted by pro-inflammatory stimuli, including viral infections, and its excessive secretion levels are related to a variety of inflammatory diseases. Here, the aim of the study was to show that SARS-CoV-2 infection induced HMGB1 secretion via active and passive release. Active HMGB1 secretion was mediated by post-translational modifications, such as acetylation, phosphorylation, and oxidation in HEK293E/ACE2-C-GFP and Calu-3 cells during SARS-CoV-2 infection. Passive release of HMGB1 has been linked to various types of cell death; however, we demonstrated for the first time that PANoptosis, which integrates other cell death pathways, including pyroptosis, apoptosis, and necroptosis, is related to passive HMGB1 release during SARS-CoV-2 infection. In addition, cytoplasmic translocation and extracellular secretion or release of HMGB1 were confirmed via immunohistochemistry and immunofluorescence in the lung tissues of humans and angiotensin-converting enzyme 2-overexpressing mice infected with SARS-CoV-2.

The Anti-apoptotic Effect of Ghrelin on Restraint Stress-Induced Thymus Atrophy in Mice

  • Jun Ho Lee;Tae-Jin Kim;Jie Wan Kim;Jeong Seon Yoon;Hyuk Soon Kim;Kyung-Mi Lee
    • IMMUNE NETWORK
    • /
    • 제16권4호
    • /
    • pp.242-248
    • /
    • 2016
  • Thymic atrophy is a complication that results from exposure to many environmental stressors, disease treatments, and microbial challenges. Such acute stress-associated thymic loss can have a dramatic impact on the host's ability to replenish the necessary naïve T cell output to reconstitute the peripheral T cell numbers and repertoire to respond to new antigenic challenges. We have previously reported that treatment with the orexigenic hormone ghrelin results in an increase in the number and proliferation of thymocytes after dexamethasone challenge, suggesting a role for ghrelin in restraint stress-induced thymic involution and cell apoptosis and its potential use as a thymostimulatory agent. In an effort to understand how ghrelin suppresses thymic T cell apoptosis, we have examined the various signaling pathways induced by receptor-specific ghrelin stimulation using a restraint stress mouse model. In this model, stress-induced apoptosis in thymocytes was effectively blocked by ghrelin. Western blot analysis demonstrated that ghrelin prevents the cleavage of pro-apoptotic proteins such as Bim, Caspase-3, and PARP. In addition, ghrelin stimulation activates the Akt and Mitogen-activated protein kinases (MAPK) signaling pathways in a time/dose-dependent manner. Moreover, we also revealed the involvement of the FoxO3a pathway in the phosphorylation of Akt and ERK1/2. Together, these findings suggest that ghrelin inhibits apoptosis by modulating the stress-induced apoptotic signal pathway in the restraint-induced thymic apoptosis.

간세포에서 산화적 스트레스 억제를 통한 생달가지 추출물의 세포보호 효과 (Cytoprotective Effect of Cinnamomum japonicum Siebold Branch Extracts via Blocking Oxidative Stress in Hepatocytes)

  • 양지혜
    • 대한한의학방제학회지
    • /
    • 제31권4호
    • /
    • pp.283-293
    • /
    • 2023
  • Objectives : Native to East Asia, Japan, and Korea, Cinnamomum japonicum Siebold (CJ) is renowned for its aromatic leaves and bark. We previously assessed the antioxidant activity of fractionated CJ branches (CJB:70% EtOH extract), including hexane (CJB1), chloroform (CJB2), ethyl acetate (CJB3), butanol (CJB4), and water (CJB5). Our findings revealed that CJB3 exhibited the highest antioxidant activity. Here, we aimed to investigate whether CJB3 possesses cytoprotective effects and induces the activity of antioxidant enzymes in hepatocytes. Methods : As HepG2 cells were the first to exhibit the key characteristics of hepatocytes, we investigated the hepatoprotective effects of CJB3 on HepG2 cells. Results : Before conducting the cell experiment, we checked that CJB3, up to a concentration of 100 ㎍/mL, did not exhibit cytotoxicity toward HepG2 cells. ROS production increased because of t-BHP treatment decreased in a concentration-dependent manner upon CJB3 treatment. We confirmed that CJB3 inhibited t-BHP-induced cell death. CJB3 was found to reverse the expression of proteins associated with t-BHP-induced apoptosis. We also observed that CJB3 induced Nrf2 phosphorylation and the nuclear translocation of Nrf2. And, CJB3 treatment caused a time-dependent enhancement of GCL and NQO1 protein expression. We further confirmed that CJB3 increased the expression of Nrf2 target genes, and this effect was associated with the activation of JNK, p38, and AMPK. Conclusion : CJB3 prevents t-BHP-induced oxidative stress and apoptosis and enhances the expression of Nrf2 target genes via JNK, p38, and AMPK activation. These results suggest that CJB3 is a promising candidate for the treatment of liver diseases.

Fusobacterium nucleatum infection induces CSF3 expression through p38 MAPK and JNK signaling pathways in oral squamous cell carcinoma cells

  • Ahyoung Jo;Jung-Min Oh
    • International Journal of Oral Biology
    • /
    • 제49권1호
    • /
    • pp.1-9
    • /
    • 2024
  • Oral bacterial infections substantially affect the development of various periodontal diseases and oral cancers. However, the molecular mechanisms underlying the association between Fusobacterium nucleatum (F. nucleatum ), a major periodontitis (PT)-associated pathogen, and these diseases require extensive research. Previously, our RNA-sequencing analysis identified a few hundred differentially expressed genes in patients with PT and peri-implantitis (PI) than in healthy controls. Thus, in the present study using oral squamous cell carcinoma (OSCC) cells, we aimed to evaluate the effect of F. nucleatum infection on genes that are differentially regulated in patients with PT and PI. Human oral squamous cell carcinoma cell lines OSC-2O, HSC-4, and HN22 were used. These cells were infected with F. nucleatum at a multiplicity of infection of 100 for 3 hours at 37℃ in 5% CO2. Gene expression was then measured using reverse-transcription polymerase chain reaction. Among 18 genes tested, the expression of CSF3, an inflammation-related cytokine, was increased by F. nucleatum infection. Additionally, F. nucleatum infection increased the phosphorylation of AKT, p38 MAPK, and JNK in OSC-20 cells. Treatment with p38 MAPK (SB202190) and JNK (SP600125) inhibitors reduced the enhanced CSF3 expression induced by F. nucleatum infection. Overall, this study demonstrated that F. nucleatum promotes CSF3 expression in OSCC cells through p38 MAPK and JNK signaling pathways, suggesting that p38 MAPK and JNK inhibitors may help treat F. nucleatum-related periodontal diseases by suppressing CSF3 expression.

Innate Immune-Enhancing Effect of Pinus densiflora Pollen Extract via NF-κB Pathway Activation

  • Sehyeon Jang;San Kim;Se Jeong Kim;Jun Young Kim;Da Hye Gu;Bo Ram So;Jung A Ryu;Jeong Min Park;Sung Ran Yoon;Sung Keun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.644-653
    • /
    • 2024
  • Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/β and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.

Protective effects of Angelica keiskei extract against TNF-α-induced oxidative stress and vascular inflammation in human umbilical vein endothelial cells

  • Jae Young Shin;Ji Hyeon Park;Byoung Ok Cho;Eun Seo Kang;Mi Hyun Joo;Young-Soo Kim;Seon Il Jang
    • 한국식품저장유통학회지
    • /
    • 제31권4호
    • /
    • pp.590-600
    • /
    • 2024
  • Angelica keiskei, a perennial herb from Apiaceae family, has been reported to improve diabetes, inhibit thrombosis, alleviate dyslipidemia, and prevent type 2 diabetes, obesity, and atherosclerosis. In this study, the protective effects of A. keiskei extract (AKE) against tumor necrosis factor-alpha (TNF-α)-induced oxidative stress and vascular inflammation in human umbilical vein endothelial cells (HUVECs) were investigated through cell viability analysis, antioxidant enzyme analysis, western blotting, and immunofluorescence staining. The results demonstrated that pretreatment of Angelica keiskei with AKE significantly inhibited the expression of key adhesion molecules such as E-selectin, ICAM-1 and VCAM-1 induced by TNF-α. AKE also showed a substantial reduction in intracellular reactive oxygen species levels and an increase in antioxidant enzyme activity, indicating potential antioxidant capabilities. This study further explained that AKE interfered with the nuclear factor-kappa B (NF-κB) pathway by inhibiting phosphorylation of IκBα and NF-κB, thereby preventing nuclear translocation. Additionally, AKE selectively inhibited the activation of c-Jun N-terminal kinase (JNK) within the mitogen-activated protein kinase (MAPK) pathway, revealing a specific action mechanism. These findings collectively suggest that AKE possesses multi-faceted protective properties, making it a potential therapeutic agent for inflammatory conditions and early atherosclerosis.

Proteome-wide Characterization and Pathophysiology Correlation in Non-ischemic Cardiomyopathies

  • Seonhwa Lee;Dong-Gi Jang;Yeon Ju Kyoung;Jeesoo Kim;Eui-Soon Kim;Ilseon Hwang;Jong-Chan Youn;Jong-Seo Kim;In-Cheol Kim
    • Korean Circulation Journal
    • /
    • 제54권8호
    • /
    • pp.468-481
    • /
    • 2024
  • Background and Objectives: Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue-based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies. Methods: Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography-mass spectrometry. Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings. Results: The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes. Conclusions: Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.

Sword Bean (Canavalia gladiata) Pod Exerts Anti-Allergic and Anti-Inflammatory Effects through Modulation of Th1/Th2 Cell Differentiation

  • Kyung-A Hwang;Yu Jin Hwang;Hye-Jeong Hwang;Sang Hoon Lee;Young Jun Kim
    • Journal of Web Engineering
    • /
    • 제14권14호
    • /
    • pp.2853-2869
    • /
    • 2022
  • Allergy is an immunoglobulin E (IgE)-mediated process, and its incidence and prevalence have increased worldwide in recent years. Therapeutic agents for allergic diseases are continuously being developed, but side effects follow when used for a long-term use. Therefore, treatments based on natural products that are safe for the body are urgently required. Sword bean (Canavalia gladiata) pod (SBP) has been traditionally used to treat inflammatory diseases, but there is still no scientific basis for its anti-allergic effect. Accordingly, this study investigates the anti-allergic effect and its mechanism of SBP in vitro and in vivo. SBP reduced the nitric oxide production and decreased mRNA and protein expression of inflammatory mediates (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)), and inhibited the phosphorylation of nuclear factor kappa B (NF-κB), a major signaling molecule in the inflammatory response. Additionally, SBP extract treatment inhibited phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) signaling activity to further inhibit degranulation and allergy mediator generation and control the balance of Th1/Th2 cells, which can induce an allergic reaction when disrupted. Furthermore, the SBP extract exhibited anti-allergic effects in anti-dinitrophenyl IgE-induced RBL-2H3 cells and ovalbumin-treated mice. These findings have potential clinical implications for the treatment as well as prevention of allergic diseases.