• Title/Summary/Keyword: Protein phosphatase 1

Search Result 633, Processing Time 0.024 seconds

Purification of antigenic proteins of Paragonimus westermani and their applicability to experimental cat paragonimiasis (폐(肺)디스토마(Paragonimus westermani) 감염(感染) 고양이 혈청(血淸)에 대(對)한 ELISA 항체가(抗體價)의 의의(意義))

  • Choi, Won-Young;Yoo, Jae-Eul;Nam, Ho-Woo;Choi, Hyung-Rak
    • Parasites, Hosts and Diseases
    • /
    • v.24 no.2
    • /
    • pp.177-186
    • /
    • 1986
  • This study was designed to evaluate the partially purified antigens which were fractionated from crude extract of Paragonimus westermani and to monitor the enzyme-linked immunosorbent assay (ELISA) in experimental cat paragonimiasis during the course of infection as well as before and after chemotherapy. Crude extract of 6-month-old adult P. westermani was fractionated to 5 antigens by successive applications of ammonium sulfate precipitation, ion exchange chromatography and gel filtration. And the cats, 10 in each group, were infected with 60, 30, 15, and 5 metacercariae, then the half of each group was treated with praziquantel 2 times in one day of 100mg per kilogram of weight on 150 days after the infection. Sera were collected every 10 days. ELISA was performed with the concentration of $2{\mu}g/ml$ antigen, 100 times diluted sera and 1,000 times diluted alkaline phosphatase conjugated anti-cat IgG. The results were as follows: 1. Absorbance by ELISA with proteins precipitated by differential concentration of ammonium sulfate was the highest at $51{\sim}65%$ precipitate (PA2), followed by $0{\sim}50%$ precipitate (PAl), $66{\sim}80%$ precipitate (PA3), and $81{\sim}90%$ precipitate (PA4). Unprecipitated protein over 90% ammonium sulfate (PA5) showed the lowest antigenicity. 2. Fractionation of PA1, PA2, and PA3 through the DEAE-cellulose column did not differentiate the antigenic proteins. 3. By passing through the Sephadex G-200 column, PA1 and PA2 were fractionated to high molecular weight proteins and those of low molecular weight which showed high absorbance by ELISA (PA1-I, II and PA2-I, II). But PA3 was shown to have a fraction of high molecular weight proteins (PA3-I) which showed high antigenicity. 4. SDS-polyacrylamide gel electrophoresis of PA1-I, P A1-II, PA2-I, PA2-II, PA3-I, and crude extract was performed. Fraction PA1-I was composed of proteins which had the molecular weight of 270 kilodaltons(KD) to 196 KD; of them 220KD protein was major band. Fraction PA2-I was composed of $255{\sim}225\;KD$, and PA3-I, $255{\sim}240\;KD$, respectively. Fraction PA1-II and fraction PA2-II consisted of 30 KD proteins. 5. Absorbance by ELISA began to increase within $10{\sim}20$ days after the infection and reached the highest on $140{\sim}180$ days, then made plateau thereafter. 6. Absorbance by ELISA decreased after praziquantel treatment. In 60 metacercariae infection group, the absorbance had been decreasing, but remained within the positive range during observation period, while those of 30, 15, and 5 metacercariae infection groups turned to negative range. 7. Fraction PA1-II showed the highest antigenicity in ELISA, then fraction PA2-I, fraction PA1-I, fraction PA2-II, fraction PA3-I and crude extract followed. In early phase of infection, the absorbance of fraction PA1-II showed more rapid increase than those of the other fractions and it came to positive range at $20{\sim}30$ days after infection.

  • PDF

EFFECT OF ENAMEL MATRIX DERIVATIVE (EMD, $EMDOGAIN^{(R)}$) ON THE DIFFERENTIATION OF CULTURED HUMAN PERIODONTAL LIGAMENT CELLS AND MESENCHYMAL STEM CELLS (배양된 사람 치주인대세포와 골수유래간엽줄기세포의 분화에 미치는 법랑기질유도체 (Enamel Matrix Derivative, EMD)의 영향)

  • Park, Sang-Gyu;Jue, Seong-Suk;Kwon, Yong-Dae;Choi, Byung-Joon;Kim, Young-Ran;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.281-286
    • /
    • 2009
  • Introduction: Enamel matrix derivative (EMD) is a protein which is secreted by Hertwig root sheath and plays a major role in the formation of cementum and attachment of peridontium. Several studies have shown that EMD promoted the proliferation and differentiation of preosteoblasts, osteoblasts and periodontal ligament cells in vitro: however, reports showing the inhibition of osteogenic differentiation by EMD also existed. This study was designed to simultaneously evaluate the effect of EMD on the two cell lines (human mesenchymal stem cells: hMSC, human periodontal ligament derived fibroblasts: hPDLCs) by means of quantitative analysis of some bone related matrices (Alkaline phosphatase : ALP, osteopontin ; OPN, osteocalcin ; OC). Materials and Methods: hMSCs and hPDLCs were expanded and cells in the 4${\sim}$6 passages were adopted to use. hMSc and hPDLCs were cultured during 1,2,7, and 14 days with 0, 50 and 100 ${\mu}g/ml$ of EMD, respectively. ALP activity was assessed by SensoLyte ALP kit and expressed as values of the relative optical density. Among the matrix proteins of the bony tissue, OC and OPN were assessed and quantification of these proteins was evaluated by means of human OC immunoassay kit and human OPN assay kit, respectively. Results: ALP activity maintained without EMD at $1,2^{nd}$ day. The activity increased at $7^{th}$ day but decreased at $14^{th}$ day. EMD increased the activity at $14^{th}$ day in the hPDLCs culture. In the hMSCs, rapid decrease was noted in $7^{th}$ and $14^{th}$ days without regard to EMD concentrations. Regarding the OPN synthesis in hPDLCs, marked decrease of OPN was noted after EMD application. Gradual decrease tendency of OPN was shown over time. In hMSCs, marked decrease of OPN was also noted after EMD application. Overall concentration of OPN was relatively consistent over time than that in hPDLCs. Regarding the OC synthesis, in both of hPDLCs and hMSCs, inhibition of OC formation was noted after EMD application in the early stages but EMD exerted minimal effect at the later stages. Conclusion: In this experimental condition, EMD seemed to play an inhibitory role during the differentiation of hMSCs and hPDLCs in the context of OC and OPN formation. In the periodontium, there are many kinds of cells contributing to the regeneration of oral tissue. EMD enhanced ALP activity in hPDLCs rather than in hMSCs and this may imply that EMD has a positive effect on the differentiation of cementoblasts compared with the effect on hMSCs. The result of our research was consistent with recent studies in which the authors showed the inhibitory effect of EMD in terms of the differentiation of mineral colony forming cells in vitro. This in vitro study may not stand for all the charateristics of EMD; thus, further studies involving many other bone matrices and cellular attachment will be necessary.

The Effects of Prostaglandin and Dibutyryl cAMP on Osteoblastic Cell Activity and Osteoclast Generation (Prostaglandin과 Dibutyryl cAMP가 조골세포의 활성과 파골세포 형성에 미치는 영향)

  • Mok, Sung-Kyu;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.448-468
    • /
    • 1996
  • To maintain its functional integrity, bone is continuously remodelled by a process involving resorption by osteoeclasts and formation by osteoblasts, In order to respond to changes in the physical environment or to trauma with the relevant action, this process is strictly regulated by locally synthesized or systemic fators, Prostaglandin $E_2(PGE_2$) is perhaps one of the best studied factors, having been known to affect bone cell function for several decades.$PGE_2$ has both anabolic and catabolic activities. Excess of $PGE_2$ has been implicated in a number of pathological states associated with bone loss in a number of chronic inflammatory conditions such as periodontal disease and rheumatoid arthritis. $PGE_2$ and other arachidonic acid metabolites have been shown to be potent stimulators of osteoclastic bone resorption in organ culture. The anabolic effects of $PGE_2$ were first noticed when an increase in periosteal woven bone formation was seen after the infusion of $PGE_2$ into infants in order to prevent closure of the ductus arteriosus. The cellular basis for the catabolic actions of $PGE_2$ has been well characterized. $PGE_2$increases osteoclast recruitment in bone marrow cell cultures. Also $PGE_2$ has a direct action on osteoclast serving to inhibit activity and can also indirectly activate osteoclast via other cells in the vicinity, presumably osteoblast. The cellular mechanisms for the anabolic actions of $PGE_2$ are not nearly so well understood. The purpose of this paper was to study the effects of $PGE_2$ and dibutyl(DB)cAMP on osteoblastic clone MC3T3El cells and on the generation of osteoclasts from their precursor cells. The effect of $PGE_2$ and DBcAMP on the induction of alkaline phoaphatase(AlP) was investigated in osteoblastic clone MC3T3El cells cultured in medium containing 0.4% fetal bovine serum. $PGE_2$ and DBcAMP stimulated ALP activity and MTT assay in the cells in a dose-dependent manner at concentrations of lO-SOOng/ml. Cycloheximide, protein synthesis inhibitor, inhibited the stimulative effect of $PGE_2$ and DBcAMP on ALP activity in the cells. $PGE_2$also increased the intracellular cAMP content in a dose-dependent fashion with a maximal effect at 500ng/ml. The effect of $PGE_2$ on the generation of osteoclasts was investigated in a coculture system of mouse bone marrow cells with primary osteoblastic cells cultured in media containing 10% fetal bovine serum.After cultures, staining for tartrate-resistant acid phosphatase(TRAP)-marker enzyme of osteoclast was performed. The TRAP(+) multinucleated cells(MNCs), which have 3 or more nuclei, were counted. More TRAP(+) MNCs were formed in coculture system than in control group. $PGE_2(10^{-5}10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in culture. $PGE_2(10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in coculture of osteoblastic clone MC3T3E1 cells This results suggest that $PGE_2$ stimulates the differentiation of osteoblasts and generation of osteoclast, and are involved in bone formation, as well as in bone resorption.

  • PDF