• 제목/요약/키워드: Protein kinase G (PKG)

검색결과 12건 처리시간 0.016초

High $K^+$-Induced Relaxation by Nitric Oxide in Human Gastric Fundus

  • Kim, Dae-Hoon;Kim, Young-Chul;Choi, Woong;Yun, Hyo-Young;Sung, Ro-Hyun;Kim, Hun-Sik;Kim, Heon;Yoo, Ra-Young;Park, Seon-Mee;Yun, Sei-Jin;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권5호
    • /
    • pp.297-303
    • /
    • 2012
  • This study was designed to elucidate high $K^+$-induced relaxation in the human gastric fundus. Circular smooth muscle from the human gastric fundus greater curvature showed stretch-dependent high $K^+$ (50 mM)-induced contractions. However, longitudinal smooth muscle produced stretch-dependent high $K^+$-induced relaxation. We investigated several relaxation mechanisms to understand the reason for the discrepancy. Protein kinase inhibitors such as KT 5823 (1 ${\mu}M$) and KT 5720 (1 ${\mu}M$) which block protein kinases (PKG and PKA) had no effect on high $K^+$-induced relaxation. $K^+$ channel blockers except 4-aminopyridine (4-AP), a voltage-dependent $K^+$ channel ($K_V$) blocker, did not affect high $K^+$ -induced relaxation. However, N(G)-nitro-L-arginine and 1H-(1,2,4)oxadiazolo (4,3-A)quinoxalin-1-one, an inhibitors of soluble guanylate cyclase (sGC) and 4-AP inhibited relaxation and reversed relaxation to contraction. High $K^+$-induced relaxation of the human gastric fundus was observed only in the longitudinal muscles from the greater curvature. These data suggest that the longitudinal muscle of the human gastric fundus greater curvature produced high $K^+$-induced relaxation that was activated by the nitric oxide/sGC pathway through a $K_V$ channel-dependent mechanism.

Nitric Oxide-mediated Relaxation by High $K^+$ in Human Gastric Longitudinal Smooth Muscle

  • Kim, Young-Chul;Choi, Woong;Yun, Hyo-Young;Sung, Ro-Hyun;Yoo, Ra-Young;Park, Seon-Mee;Yun, Sei-Jin;Kim, Mi-Jung;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.405-413
    • /
    • 2011
  • This study was designed to elucidate high-$K^+$ induced response of circular and longitudinal smooth muscle from human gastric corpus using isometric contraction. Contraction from circular and longitudinal muscle stripes of gastric corpus greater curvature and lesser curvature were compared. Circular smooth muscle from corpus greater curvature showed high $K^+$ (50 mM)-induced tonic contraction. On the contrary, however, longitudinal smooth muscle strips showed high $K^+$ (50 mM)-induced sustained relaxation. To find out the reason for the discrepancy we tested several relaxation mechanisms. Protein kinase blockers like KT5720, PKA inhibitor, and KT5823, PKG inhibitor, did not affect high $K^+$-induced relaxation. $K^+$ channel blockers like tetraethylammonium (TEA), apamin (APA), glibenclamide (Glib) and barium ($Ba^{2+}$) also had no effect. However, N(G)-nitro-L-arginine (L-NNA) and 1H-(1,2,4) oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC) and 4-AP (4-aminopyridine), voltage-dependent $K^+$ channel (KV) blocker, inhibited high $K^+$ -induced relaxation, hence reversing to tonic contraction. High $K^+$-induced relaxation was observed in gastric corpus of human stomach, but only in the longitudinal muscles from greater curvature not lesser curvature. L-NNA, ODQ and KV channel blocker sensitive high $K^+$-induced relaxation in longitudinal muscle of higher portion of corpus was also observed. These results suggest that longitudinal smooth muscle from greater curvature of gastric corpus produced high $K^+$-induced relaxation which was activated by NO/sGC pathway and by $K_V$ channel dependent mechanism.