• Title/Summary/Keyword: Protein kinase B

Search Result 839, Processing Time 0.025 seconds

Substrate Specificity of UL97 Protein Kinase from Human Cytomegalovirus using Spot Assay (Spot Assay를 통한 Human Cytomegalovirus의 UL97 단백질 인산화 효소의 기질 특이성)

  • Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.50 no.4
    • /
    • pp.268-271
    • /
    • 2006
  • Protein kinase UL97 is an unusual protein kinase that can phosphorylate nucleoside analogs as well as protein/peptide. Previously we found a H2B-derived peptide, KESYSVYVYKV and reported that the P+5 position (K) is important. To further understand the substrate specificity at the P+5 position, we introduced spot assay system and showed that a peptide containing K residue among other amino acids at the P+5 position is the best substrate. Also other residues such as M, I, L, or G are good enough to be substrate of UL97. This result may aid the discovery of a new antiviral inhibitor.

Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells (RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura is a brown macroalgae that is found worldwide. Although several genera of Desmarestia have been reported as having anti-tumorigenic, anti-melanogenic, and photoprotective properties, the anti-inflammatory activity of D. tabacoides Okamura has not yet been evaluated. In this study, we analyzed the anti-inflammatory mechanisms of D. tabacoides Okamura ethanol extract (DTEE) via the inhibition of nitric oxide (NO) and prostaglandin (PG) E2 production and the expression of their corresponding enzymes, inducible NO synthase (iNOS), and cyclooxygenase (COX)-2. In addition, their upstream signaling molecules were evaluated by Western blot analysis, such as nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and phosphoinositide-3-kinase (PI3K)/Akt, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The DTEE treatment significantly inhibited LPS-induced NO and PGE2 production as well as the expression of their corresponding enzymes, iNOS, and COX-2 without cytotoxicity. The stimulated transcription factor NF-κB and upstream signaling molecules extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 were attenuated by the DTEE treatment, which was statistically significant, while Akt did not provide any inhibitory effect. Moreover, the DTEE treatment significantly mitigated the LPS-activated adaptor molecules, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) in the RAW 264.7 cells. These results suggest that DTEE attenuates TLR4-mediated inflammatory responses by inhibiting NF-κB activation and suppressing MAPK phosphorylation in LPS-stimulated RAW 264.7 cells.

Cyclooxygenase-2 as a Molecular Target for Cancer Chemopreventive Agents

  • Surh, Young-Joon
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.89-96
    • /
    • 2001
  • Recently, considerable attention has been focused on the role of cyclooxygenase-2 (COX-2) in the carcinogenesis as well as in inflammation. Improperly overexpressed COX-2 has been observed in many types of human cancers and transformed cells in culture. Thus, it is conceivable that targeted inhibition of abnormally or improperly up-regulated COX-2 provides one of the most effective and promising strategies for cancer prevention. A ubiquitous eukaryotic transcription factor, NF-kB is considered to be involved in regulation of COX-2 expression. Furthermore, extracellular-regulated protein kinase and p38 mitogen-activated protein (MAP) kinase appear to be key elements of the intracellular signaling cascades involved in NF-kB activation in response to a wide array of external stimuli. Certain chemopreventive phytochemicals suppress activation of NF-kB by blocking one or more of the MAP kinases, which may contribute to their inhibitory effects on COX-2 induction. One of the plausible mechanisms by which chemopreventive phytochemicals inhibit NF-kB activation involves suppression of degradation of the inhibitory unit I kB, which hampers subsequent translocation of p65, the functionally active subunit of NF-kB.

  • PDF

Role of PI3-Kinase/Akt Pathway in the Activation of Etoposide-Induced $NF-{\kappa}B$ Transcription Factor

  • Choi Yong-Seok;Park Heon-Yong;Jeong Sun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.391-398
    • /
    • 2006
  • $NF-{\kappa}B$ is a transcription factor involved in the innate immunity against bacterial infection and inflammation. It is also known to render cells resistant to the apoptosis caused by some anticancer drugs. Such a chemoresistance of cancer cells may be related to the activation of $NF-{\kappa}B$ transcription factor; however, the mechanism of activation is not well understood. Here, we demonstrate that a chemotherapeutic agent, etoposide, independently stimulates the $I{\kappa}B{\alpha}$ degradation pathway and PI3-kinase/Akt signaling pathway: The classical $I{\kappa}B{\alpha}$ degradation pathway leads to the nuclear translocation and DNA binding of p65 subunit through $IKK{\beta}$ kinase, whereas the PI3-kinase/Akt pathway plays a distinct role in activating this transcription factor. The PI3-kinase/Akt pathway acts on the p50 subunit of the $NF-{\kappa}B$ transcription factor and enhances the DNA binding affinity of the p50 protein. It may also explain the role of the PI3-kinase/Akt pathway in the anti-apoptotic function of $NF-{\kappa}B$ during chemoresistance of cancer cells.

Sequence Analysis and Potential Action of Eukaryotic Type Protein Kinase from Streptomyces coelicolor A3(2)

  • Roy, Daisy R.;Chandra, Sathees B.C.
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.44-49
    • /
    • 2008
  • Protein kinase C (PKC) is a family of kinases involved in the transduction of cellular signals that promote lipid hydrolysis. PKC plays a pivotal role in mediating cellular responses to extracellular stimuli involved in proliferation, differentiation and apoptosis. Comparative analysis of the PKC-${\alpha},{\beta},{\varepsilon}$ isozymes of 200 recently sequenced microbial genomes was carried out using variety of bioinformatics tools. Diversity and evolution of PKC was determined by sequence alignment. The ser/thr protein kinases of Streptomyces coelicolor A3 (2), is the only bacteria to show sequence alignment score greater than 30% with all the three PKC isotypes in the sequence alignment. S.coelicolor is the subject of our interest because it is notable for the production of pharmaceutically useful compounds including anti-tumor agents, immunosupressants and over two-thirds of all natural antibiotics currently available. The comparative analysis of three human isotypes of PKC and Serine/threonine protein kinase of S.coelicolor was carried out and possible mechanism of action of PKC was derived. Our analysis indicates that Serine/ threonine protein kinase from S. coelicolor can be a good candidate for potent anti-tumor agent. The presence of three representative isotypes of the PKC super family in this organism helps us to understand the mechanism of PKC from evolutionary perspective.

Detection of the expression of a Bombyx mori Atypical Protein Kinase C in BmPLV-Infected Larval Midgut

  • Cao, Jian;He, Yuanqing;Li, Guohui;Chen, Keping;Kong, Jie;Wang, Fenghua;Shi, Jing;Yao, Qin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.2
    • /
    • pp.59-64
    • /
    • 2011
  • Protein kinase C (PKC) is involved in many cellular signaling pathways, it participates in many physiological processes, such as cell cycle, growth, proliferation, differentiation and apoptosis. To investigate the effect of PKC on the silkworm midgut tissue infection of Bombyx mori parvo-like virus (BmPLV), a B. mori atypical protein kinase C (BmaPKC) gene was cloned from larval midgut tissue, expressed in E. coli and purified. Additionally, the BmPLV susceptible silkworm strain and resistant silkworm strain were used to test the effect of the B. mori infection on BmPLV. The result showed that BmaPKC encodes a predicted 586 amino acid protein, which contains a C-terminal kinase domain and an N-terminal regulatory domain. The maximum expression amount of the soluble (His)6-tagged fusion protein was detected after 0.8 mmol/L IPTG was added and cultured at $21^{\circ}C$. The (His) 6-tagged fusion protein revealed about 73 kDa molecular weight which confirmed by western blot and mass spectrography. Furthermore BmaPKC protein were detected at 0-72 h post-infection in BmPLVinfected larval midgut tissue, western blot showed that as time went on, the expression of BmaPKC increased gradually in susceptible strain, the expression quantity on 72 h is 5 times of 0 h. However, in resistant strain, the expression quantity is slightly lower than susceptible strain. But no significant change in resistant strain was observed as time went on. The available data suggest that BmaPKC may involve in the regulation of BmPLV proliferation.

Kinetic Study on Dephosphorylation of Myelin Basic Protein by Some Protein Phosphates

  • 황인성;김진한;최명운
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.428-432
    • /
    • 1997
  • The dephosphorylation specificity of protein phosphatase 2A (PP2A), calcineurin (PP2B) and protein phosphatase 2C (PP2C) were studied in vitro using myelin basic protein (MBP) as a model substrate which was fully phosphorylated at multiple sites by protein kinase C (PKC) or cyclic AMP-dependent protein kinase (PKA). In order to determine the site specificity of phosphates in myelin basic protein, the protein was digested with trypsin and the radioactive phosphopeptide fragments were isolated by high performance liquid chromatography (HPLC) on reversed-phase column. Subsequent analysis and/or sequential manual Edman degradation of the purified phosphopeptides revealed that Thr-65 and Ser-115 were most extensively phophorylated by PKA and Ser-55 by PKC. For the dephosphorylation kinetics, the phosphorylated MBP was treated with calcineurin or PP2C with various time intervals and the reaction was terminated by direct tryptic digest. Both Thr-65 and Ser-115 residues were dephosphorylated more rapidly than any other ones by phosphatases. However it can be differentiated further by first-order kinetics that the PP2B dephosphorylated both Thr-65 and Ser-115 with almost same manner, whereas PP2C dephosphorylated somewhat preferentially the Ser-115.

Studies on the Activation Mechanism of c-src Protein Tyrosine Kinase by Ginsenoside-Rgl

  • Hong, Hee-Youn;Yoo, Gyung-Soo;Choi, Jung-Kap
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.133-139
    • /
    • 1998
  • We have studied an activation mechanism of $pp60^{c-src}$ protein tyroslne kinase (PTK) by ginsenoside-$Rg_1$ (G-$Rg_1$ ) in NIH(pMcsrc/foc)B c-src overexpressor cells. It was previously reported that G--$Rg_1$ stimulated the activation of c-src kinase at 20 pM with a 18 hr-incubation, increasing the activity by 2-4-fold over that of untreated control, and this effect was blocked by treatments of in- hibitors of either protein synthesis (cycloheximide) or RNA synthesis (actinomycin D) (Hong, H.Y. et at. Arch. Pharm. Res. 16, 114 (1993)). However, an amount of c-src protein itself in wild-type cells was not changed by G-$Rg_1$. When the cells mutated at one or two tyrosine residue(s) (Y416/527) that are important sites to regulate the kinase activity were treated with G-$Rg_1$, increases both in the activity of c-src kinase and in the expression of the protein were not observed. In addition, removal of extracellular calcium ion by EGTA or inhibition of PKC by H-7 canceled the G-$Rg_1$-induced activation of the kinase. Although the activation was little affected by G-$Rg_1$ with a calcium ionophore A23187, it was synergistically stimulated by treatment of G-Rgl and PMA, a PKC activator. Taken together, these results suggest that the activation of c-src kinase by G-$Rg_1$ is caused by an increase in the specific activity of the kinase, but not in amount of it, and is involved with both collular calcium ion and PKC. Further the increase in the specific activity of c-src kinase may result from altered phosphorylation at tyro-416 and -527.

  • PDF

Protein Kinase B Inhibits Endostatin-induced Apoptosis in HUVECs

  • Kang, Hee-Young;Shim, Dong-Hwan;Kang, Sang-Sun;Chang, Soo-Ik;Kim, Hak-Yong
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.97-104
    • /
    • 2006
  • Endostatin is a tumor-derived angiogenesis inhibitor, and the endogenous 20 kDa carboxyl-terminal fragment of collagen XVIII. In addition to inhibiting angiogenesis, endostatin inhibits tumor growth and the induction of apoptosis in several endothelial cell types. However, the mechanisms that regulate endostatin-induced apoptotic cell death are unclear. Here, we investigated apoptotic cell death and the underlying regulatory mechanisms elicited of endostatin in human umbilical vein endothelial cells (HUVECs). Endostatin was found to induce typical apoptotic features, such as, chromatin condensation and DNA fragmentation in these cells. Thus, as the phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in various cell types, we investigated whether this pathway could protect cells against endostatin induced apoptosis. It was found that the inhibition of PI3K/PKB significantly increased endostatin-induced apoptosis, and that endostatin-induced cell death is physiologically linked to PKB-mediated cell survival through caspase-8.

EARLY EVENTS OCCURRING DURING LIGHT SIGNAL TRANSDUCTION IN PLANTS AND FUNGI

  • Hasunuma, Kohji;Ogura, Yasunobu;Yabe, Naoto
    • Journal of Photoscience
    • /
    • v.5 no.2
    • /
    • pp.73-81
    • /
    • 1998
  • Light signals constitute major factors in regulating gene expression and morphogenesis in plants and fungi. Phytochrome A and B were well characterized red and far-red light receptors in plants. Red light signals increased the phosphorylation of 18 kDa protein, which was identified to be nucleoside diphosphate (NDP) kinase. The NDP kinase catalyzed autophosphorylation and had a protein kinase activity similar to MAP (mitogen activated protein) kinase. As candidates for blue light photoreceptors, cDNAs for CRY1 and CRY2 were isolated. The N-teminal regions of these proteins showed a high hornology to DNA photolyase. The 120 kDa protein first detected in Pisurn sativurn, which showed blue light induced phosphorylation was also detected in Arabidopsis thaliana. The 120 kDa protein was encoded by the nphl gene, which regulated positive phototropism of the plant. In Neurospora crassa, blue light irradiation of the membrane fraction prepared from roycelia stimulated the phosphorylation of the 15 kDa protein, which was also identifmd to be an NDP kinase. Recent progress in understanding early events in light signal transduction mainly in Pisum sativum Alaska, Arabidopsis thaliana and Neurospora crassa was summarized.

  • PDF