• Title/Summary/Keyword: Protein hydrolysis

Search Result 589, Processing Time 0.027 seconds

A Study on the Allergenicity of Egg Protein (달걀 단백질의 Allergenicity에 관한 연구)

  • 정은자
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.228-236
    • /
    • 1998
  • Egg is an important foods containing many good proteins. But it is well known that egg protein has a lot of allergenicity. The purpose of this study is to develop the methods to reduce the allergenicity of egg. I tried various experimental methods ; For example, heat treatment, irradiation with ultraviolet and microwaves, treatment with polyphosphate, enzyme hydrolysis and PCA inhibition test using guinea pigs and degrees of hydrolysis. The results obtained were as follows ; 1. Heat treatment reduced allergenicity of egg protein. The longer the heat time, the better the effect. 2. Irradiating with ultraviolet and microwave increased both the degree of protein hydrolysis and PCA inhibition reduced the allergenicity. Ultraviolet was more effective than microwaves on egg protein. Fertilized eggs did not reduce allergenicity. 3. Enzyme treatment increased the degree of hydrolysis and PCA inhibition, and reduced allergenicity considerably. Alcalase was more effective than neutrase. 4. Adding polyphosphate did not induced protein hydrolysis, but increased PCA inhibition and reduced allergenicity. 5. The picture of various treatments of egg gel by SEM showed a light surface which indicated that protein was desolved. Neutrase was lighter than alcalase, and the longer the heating time, the lighter the surface became. 6. Measurements of the hardness of egg gel by Instron showed that the longer the reaction time with enzyme, the softer it became.

  • PDF

Characterization of Yeast Protein Hydrolysate for Potential Application as a Feed Additive

  • Ju Hyun Min;Yeon Ju Lee;Hye Jee Kang;Na Rae Moon;Yong Kuk Park;Seon-Tea Joo;Young Hoon Jung
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.723-737
    • /
    • 2024
  • Yeast protein can be a nutritionally suitable auxiliary protein source in livestock food. The breakdown of proteins and thereby generating high-quality peptide, typically provides nutritional benefits. Enzyme hydrolysis has been effectively uesed to generate peptides; however, studies on the potential applications of different types of enzymes to produce yeast protein hydrolysates remain limited. This study investigated the effects of endo- (alcalase and neutrase) and exotype (flavourzyme and prozyme 2000P) enzyme treatments on yeast protein. Endotype enzymes facilitate a higher hydrolysis efficiency in yeast proteins than exotype enzymes. The highest degree of hydrolysis was observed for the protein treated with neutrase, which was followed by alcalase, prozyme 2000P, and flavourzyme. Furthermore, endotype enzyme treated proteins exhibited higher solubility than their exotype counterparts. Notably, the more uniform particle size distribution was observed in endotype treated yeast protein. Moreover, compared with the original yeast protein, the enzymatic protein hydrolysates possessed a higher content of β-sheets structures, indicating their higher structural stability. Regardless of enzyme type, enzyme treated protein possessed a higher total free amino acid content including essential amino acids. Therefore, this study provides significant insights into the production of protein hydrolysates as an alternative protein material.

Volatile Compound, Physicochemical, and Antioxidant Properties of Beany Flavor-Removed Soy Protein Isolate Hydrolyzates Obtained from Combined High Temperature Pre-Treatment and Enzymatic Hydrolysis

  • Yoo, Sang-Hun;Chang, Yoon Hyuk
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.338-347
    • /
    • 2016
  • The present study investigated the volatile compound, physicochemical, and antioxidant properties of beany flavor-removed soy protein isolate (SPI) hydrolyzates produced by combined high temperature pre-treatment and enzymatic hydrolysis. Without remarkable changes in amino acid composition, reductions of residual lipoxygenase activity and beany flavor-causing volatile compounds such as hexanol, hexanal, and pentanol in SPI were observed after combined heating and enzymatic treatments. The degree of hydrolysis, emulsion capacity and stability, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, and superoxide radical scavenging activity of SPI were significantly increased, but the magnitudes of apparent viscosity, consistency index, and dynamic moduli (G', G") of SPI were significantly decreased after the combined heating and enzymatic treatments. Based on these results, it was suggested that the enzymatic hydrolysis in combination with high temperature pre-treatment may allow for the production of beany flavor-removed SPI hydrolyzates with superior emulsifying and antioxidant functionalities.

Functional Characteristics of Whey Protein-Derived Peptides Produced Using Lactic Acid Bacteria Hydrolysis

  • Jae-Yong Lee;Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ok-Hee Kim;Dong-Hyun Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.34-43
    • /
    • 2023
  • Hydrolysis of whey-derived proteins using lactic acid bacteria (LAB) utilizes the mass culture method and fermentation of LAB to produce effective bioactive peptides. Whey protein has the biological potential of its precursors, but the active fragments may not be released depending on the hydrolysis method. As an alternative to these problems, the nutritional and bioactive functionality of the hydrolysis method have been reported to be improved using LAB for whey protein. Peptide fractions were obtained using a sample fast protein liquid chromatography device. Antioxidant activity was verified for each of the five fractions obtained. In vitro cell experiments showed no cytotoxicity and inhibited nitric oxide production. Cytokine (IL [interleukin]-1α, IL-6, tumor necrosis factor-α) production was significantly lower than that of lipopolysaccharides (+). As a result of checking the amino acid content ratio of the fractions selected through the AccQ-Tag system, 17 types of amino acids were identified, and the content of isoleucine, an essential amino acid, was the highest. These properties show their applicability for the production of functional products utilizing dietary supplements and milk. It can be presented as an efficient method in terms of product functionality in the production of uniform-quality whey-derived peptides.

Evaluation of Protein Hydrolysis and Amino Acid Ratio among Different Goat Cuts by in vitro Digestion Model

  • Jei, Oh;Joohyun, Kang;Susie, Kim;Jeonghyun, Cho;Yohan, Yoon
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.411-417
    • /
    • 2022
  • The purpose of this study was to evaluate protein hydrolysis and the amino acid ratio among different cuts of goat meat, such as the foreleg, hindleg, loin, and rib, using an in vitro digestion model. The corresponding cuts of beef and pork were used to compare with the goat meat. The hindleg (8.32%) and rib (8.32%) had the highest levels of protein hydrolysis among the goat cuts. There was no significant difference in protein hydrolysis between goat and pork (8.57%), ribs (P > 0.05), which had higher levels of protein hydrolysis than the beef ribs. Before digestion, the glutamine (53.44%) and glycine (11.03%) ratios were highest in the pre-digested goat foreleg and loin (P < 0.05). After in vitro digestion, goat ribs had the highest lysine ratio (17.54%) among the different cuts, and the lysine ratio was significantly higher in goat ribs than beef ribs (P < 0.05). This study provides basic data on protein hydrolysis and the amino acid composition of different cuts of goat meat, which may facilitate the evaluation of protein digestion patterns and bioavailability.

Effects of injection of hydrolysis plasma protein solution on the antioxidant properties in porcine M. Longissimus Lumborum

  • Seo, Hyun-Woo;Seo, Jin-Kyu;Yang, Han-Sul
    • Journal of Animal Science and Technology
    • /
    • v.58 no.8
    • /
    • pp.31.1-31.8
    • /
    • 2016
  • Background: Plasma protein hydrolysates have been shown to possess antioxidant activity. However, no report has yet to examine the antioxidant effects of injection of plasma protein hydrolysates on meat quality. Therefore, in this study, the effects of injection of hydrolysis plasma protein solution on meat quality and storability were investigated in porcine M. longissimus lumborum. Methods: Twelve pigs were randomly selected at a commercial slaughter plant and harvested. Dissected loins were injected with one of five solutions: C- control (untreated), T1- 10 mM phosphate buffer solution (PBS), T2- 10 mM PBS with 0.01 % butylated hydroxytoluene, T3- 10 mM PBS with 5 % plasma proteins, and T4- 10 mM PBS with 5 % hydrolysis plasma proteins. Results: T3 and T4 induced greater reduction in protein content of the loin muscle than other treatments. T2 resulted in the lowest pH as well as highest cooking loss. After a storage period of 3-7 days, both lightness and redness of meat were unaffected by all injection treatments. However, yellowness was significantly elevated by treatment with T4 relative to the control. T4 also resulted in the lowest shear force (a measure of meat toughness), suggesting improvement of texture or tenderness. Further, T4 resulted in the most stable TBARS values during storage, indicating that this treatment might retard rancidity in meat. Conclusion: Injection of porcine M. longissimus lumborum with hydrolysis plasma protein solution could improve overall pork quality, including tenderness and storability.

Enzymatic Hydrolysis of Egg Yolk Protein in Continuous Packed Column Operation

  • Kang, Byung-Chul;Lee, Sang-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.485-489
    • /
    • 2003
  • Enzymatic hydrolysis of egg yolk Protein was carried out in continuous packed column reactor Five supports for enzyme immobilization were evaluated in this study. We investigated the optimum operation variables - pH, temperature, and flow rate in continuous reactor operation.

  • PDF

Modifications of Skim Milk Protein by Meju Protease and Its Effect on Acid Clotting and Digestibility (메주 단백질 가수분해 효소 처리가 탈지 우유 단백질의 응고물 형성 및 소화율에 미치는 영향)

  • 이진실
    • Journal of Nutrition and Health
    • /
    • v.26 no.8
    • /
    • pp.998-1005
    • /
    • 1993
  • This study was attempted to investigate the effects of enzymatic modification of milk protein with Meju protease on its acid clotting and digestibility. The proteases used in this study were isolated from Meju(fermented soybeans) and had specific acticity of 250 units/mg protein at pH 7.0. These proteases were found to be at least 3 different isoenzymes of different pH optima(pH 4.0, 6.0, 10.0). The optimum temperature was 5$0^{\circ}C$. Hydrolyzed skim milk showed 30.5% degree of hydrolysis for 1 hr. and 36.4% degree of hydrolysis for 3.5 hrs. of protease treatment at pH 7.0. Upon acidification to pH 4.0, skim milk produced large and dense coagulum, but the coagulum was getting smaller by protease treatment. Generally, digestability of skim milk at pH 4.0 was lower than pH 2.0. At pH 4.0, native skim milk and control group had problem with hydrolysis of skim milk protein. Among protease treated groups, 1 hour treated skim milk was most effectively hyrolyzed at pH 4.0.

  • PDF

Hydrolysis of Rice Bran Oil Using Immobilized Lipase in a Stirred-Batch Reactor

  • Murty, V.Ramachandra;Bhat, Jayadev;Muniswaran, P.K.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.367-370
    • /
    • 2002
  • Candida cylindracea lipase was immobilized by adsorption on acid washed glass beads. It was observed that protein loading of the support depends on the size of the particle, with smaller particle containing higher amount of protein per unit weight. Initial reaction rate linearly varied up to enzyme concentration of 17.25 U/mL. Amount of free fatty acids produced was linearly proportional up to the enzyme loading of 1650 $\mu$g/g of bead. Achievement of chemical equilibrium took longer time in the case of less protein loading. Degree of hydrolysis was found to decrease in second and third consecutive batch operations on repeated use of immobilized lipase.

Enhancement of Water-solubilities of Protein-bound Polysaccharides Contained in the Basidiocarps of Ganoderma lucidum by Hydrolyzing with Chymotrypsin

  • Park, Won-Bong;Cheong, Jae-Yeon;Jung, Won-Tae
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.423-428
    • /
    • 1996
  • Optimum conditions for hydrolysis were investigated to enhance water-solubilities of protein-bound polysaccharides in the basidiocarps of Ganoderma lucidum by treating chymotrypsin. We also attempted with Ganoderma lucidum residue remaining after extracting hot water-soluble compoents in Ganoderma lucidum. After hydrolyzing under optimum conditions (20 ppm chymotrypsin, 2% Gampderma lucidum or 6% Ganoderma lucidum residue, at pH 10 and at $ 40^{\circ}C$), the amounts of total protein and carbohydrate of hydrolysate were measured. Michaelis constant, $K_{m}$, and maximum rate, $V_{max}$, calculated by Lineweaver-Buck plot for the hydrolysis of Ganoderma lucidum were 1.73% and 0.073%/min respectively and those for hydrolysis of Ganoderma lucidum residue were 2.40% and 0.033%/min respectively. The amount of polysaccharide isolated from Ganoderma lucidum (100 g) treated with chymotrypsin was only 3.07 g, but significantly increased amount (14.34 g) of polysaccharides was isolated from Ganoderma lucidum residue (100 g) treated with chymotrypsin. The protein-bound polysaccharide was isolated from the non-hydrolyzed and hydrolyzed sample and molecular weights of the polysaccharide were measured by Sepharose CL-48 gel filtration.

  • PDF