• Title/Summary/Keyword: Protein bodies

Search Result 325, Processing Time 0.021 seconds

Changes of Protein Bodies in the Soybean Cotyledons during Early Germination (발아과정에 따른 대두단백과립의 변화에 관하여)

  • 염영중
    • Journal of Plant Biology
    • /
    • v.20 no.4
    • /
    • pp.151-155
    • /
    • 1977
  • Ultrastructural changes of the protein bodies in Glycine max during early germination were studied. There were no major morphological changes in protein bodies within 3 days after the imbibition, but from the 4th day the expanse of protein bodies could be observed. In subsequent stages, the aggregation of protein bodies coalesced into a large mass and then less electron-dense material in the central part of the cell. At last it bacame highly vacuolated.

  • PDF

Large-scale Recovery of Recombinant Protein Inclusion Bodies Expressed in Escherichia coli

  • Middelberg. Anton P.J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.225-231
    • /
    • 1996
  • The production of recombinant proteins in Escherichia coli often leads to the formation of an intracellular inclusion body. Key process steps that can determine the economics of large-scale protein production from inclusion bodies are fermentation, inclusion body recovery, and protein refolding. Compared with protein refolding and fermentation, inclusion body recovery has received scant research attention. Nevertheless, it can control the final product yield and hence process cost for some products. Optimal separation of inclusion bodies and cell debris can also aid subsequent operations by removing contaminant particulates that foul chromatographic resins and contain antigenic pyrogens. In this review, the properties of inclusion bodies and cellular debris are therefore examined. Attempts to optimise the centrifugal separation of inclusion bodies and debris are also discussed.

  • PDF

The Degrading Patterns of Protein Bodies in the Ginseng Endosperm Cells (인삼배유세포에 존재하는 단백질체의 분해양상)

  • Lee, Chang-Seob;Kim, Woo-Kap
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.86-97
    • /
    • 1994
  • Protein bodies in the endosperm cells of mature red ginseng (Panax ginseng C.A. Meyer) were distributed evenly in the cytoplasm and their size varied from 1 to $8{\mu}m$. Three types of protein bodies were detected and they are spherical or egg-shaped ones containing homogeneous matrix only, spherical ones containing globoids, and irregular shaped ones. Protein bodies degraded in two patterns, one is to start the degration of the body from the surface toward the center, while the other is that the body was broken evenly and then degraded gradually. After degradation, only the limiting membrane remained, that causes the body to be empty. The limiting membranes fused with each other to form a large vacuole. Vicilin and legumin decreased in the endosperm cells as the protein bodies degraded gradually whereas they increased in the umbiliform layers.

  • PDF

Immunocytochemical Localization of Storage Protein in Pea (Pisum sativum) Cotyledon

  • Yu, Seong-Cheol;Lee, Chang-Seob;Kim, Woo-Kap
    • Journal of Plant Biology
    • /
    • v.39 no.2
    • /
    • pp.123-126
    • /
    • 1996
  • The pattern of seed storage protein, vicilin, deposition and site of intracellular localization was examined in cotyledon cells of pea (Pisum sativum) seed using the immunocytochemical methods. The vicilin was confined to the cisternae fo the rough endoplasmic reticulum and dictyosome as well as protein granules newly formed in rough endoplasmic reticulum. Vacuolar protein deposites and protein bodies were also labelled by gold particles. After small protein bodies were formed in the rough endoplasmic reticulum, they were transported to large protein bodies and then fused together. Electron dense protein granule, elaborated in the dictyosome, appears to be transported from dictyosome to protein body. A few unlabelled protein granules seem to be accumulated in other type of proteins than vicilin.

  • PDF

Determination of the Synthetic Time and the Transport Pattern of Vicilin and Legumin in Ginseng Endosperm Cell Using Double Immunogold Labeling (이중 면역금입자 표지법을 이용한 인삼 배유세포내 Vicilin과 Legumin의 합성시기 및 수송방식)

  • Lee, Chang-Seob;Yu, Seong-Cheol;Kim, Woo-Kap
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.267-274
    • /
    • 1995
  • Vicilin and legumin, the storage Proteins of seed, were Purified from ginseng (Panax ginseng C.A. Meyer) endosperm cells. They were immunized in rabbits, and antibodies were raised respectively. Using these two antibodies, double immunogold labeling of vicilin and legumin was carried out to determine the gap of synthetic time and the transport pattern of vicilin and legumin in the ginseng endosperm cells. Vicilin and legumin were synthesized at the same time at early embryo developmental stage. They were secreted from the Golgi bodies and accumulated into the small vacuoles. As the endosperm cells developed, vicilin and legumin localized in the small vacuoles were gradually transported toward the large central vacuole where they were stored. Protein bodies were derived from the vacuoles filled with proteins and distributed in the endosperm cells of mature red seed. Protein bodies were various in size from 1 to 8 ${\mu}{\textrm}{m}$ in which vicilin and legumin were mixed each other. The number of small particles labeled on the vicilin was greater than that of large particles labeled on the legumin in the protein bodies indicating that the amount of vicilin is higher than that of legumin in the protein bodies.

  • PDF

Changes of Protein Bodies in Endosperm Cells during Embryo Development of Ginseng (Panax ginseng C.A. Meyer) Seeds - Seeds with Red Seed Coat and Indehiscent Seeds - (인삼(Panax ginseng C.A. Meyer) 종자의 배발달에 따른 배유세포의 단백과립 변화 - 홍숙 및 미개갑 종자 -)

  • 유성철
    • Journal of Plant Biology
    • /
    • v.35 no.1
    • /
    • pp.45-51
    • /
    • 1992
  • The changes of protein bodies in endosperm cells of both seeds with red seed coat and indehiscent seeds of Panax ginseng C.A. Meyer have been investigated in relation to the embryo development. In the early stage of seeds with red seed coat, spherical spherosomes were distributed in endosperm cells. Protein bodies were formed from vacuoles containing the storage protein. Cell organelles were hardly observed in the cytoplasm. In the late stage of the seed with red seed coat, the endosperm was filled with spherosomes and protein bodies. The protein bodies consisted of amorphous inclusions with high electron density or proteinaceous matrix with even electron density. In the seed of in dehiscence, the protein body in endosperm cells contained globoids and protein crystalloids. The globoid of protein body had a electron dense materials. Umbiliform layer was formed between embryo and endosperm. The deformation patterns of endosperm cell wall and the cellulose microfibril were observed in endosperm cells near the umbiliform layer. Umbiliform layer consisted of lipid body and autolyzed cell debris. The protein body of endosperm cell near the umbiliform layer showed various degenerative patterns, and so electron density of proteinaceous matrix was gradually decreased.reased.

  • PDF

Terminal Dilation and Transformation of the Protein-filled ER to Form Protein Bodies in Pea (Pisum sativum L. var, exzellenz) Cotyledons (완두 자엽에서 소포체 말단의 팽창에 의한 단백과립 발달)

  • Jeong, Byung-Kap
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.499-509
    • /
    • 1999
  • Accumulations of the storage proteins in protein storage vacuole and the differentiation of protein bodies from protein-filled ER in developing pea cotyledons have been investigated using conventional and immunoelectron microscopy. To improve the fixation quality, single cells separated enzymatically from sliced cotyledons were used. At early stages of seed development osmiophilic protein accumulates in rER lumen were observed quite often. This protein-filled ER cisternae were differentiated into cytoplasmic protein bodies at late stage by the process called terminal dilations which have been considered a principal route of the formation of cytoplasmic protein bodies somewhat later in seed maturation. Immunocytochemical labellings of the vicilin and legumin show that presence of vicilin on both of the cytoplasmic PB and PD, but limited presence of legumin only on the cytoplasmic PB at intermediate stage of seed development. Immunogold labellings of Bip, ER retention protein, were observed on the inner periphery of protein deposits in protein storage vacuole. This result was regarded that Bip can recognize and retrieve misfolded protein during active accumulation of storage protein to the PD in PSV.

  • PDF

Morphological Study of Storage Granules of Cotyledon Cells in Cannabis sativa cv. Chungsam (헴프종자 자엽세포의 저장과립에 관한 형태학적 연구)

  • Lee, Na-Young;Kim, Dong-Min;Kim, Eun-Soo
    • Applied Microscopy
    • /
    • v.41 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • The purpose of this study is to investigate the hemp (Cannabis sativa cv. Chungsam) seed structure and ultrastructure of food reserves by scanning and transmission electron microscopy. We examined the seed coat and embryo consisting of a hypocotyl-radicle axis and two cotyledons. The seed coat consisted of exotesta and endotesta. The exotesta was a mechanical layer with lignified and elongated cells, while endotesta of the underlying layers of the exotesta was consisted of two separated cell layers. The collapsed outer layer of endotesta showed the unique reticulate structures. In cotyledon cells, protein and lipid bodies occupied most of cytoplasm. Protein bodies varied in diameter from 1.8 to $5.0{\mu}m$ and possessed a protein matrix containing electron-dense globoid crystals. Numerous lipid bodies ranged from 0.8 to $3.0{\mu}m$ in diameter were distributed around the protein bodies. During the early stages of breakdown, protein bodies rapidly changed their shape into the granular feature, however, lipid bodies were gradually degradated and fused each other. The degeneration process of protein bodies and lipid bodies of cotyledon cells might be correlated with the reports which hemp seeds rapidly lose their ability to germinate.

Construction of Transfer Vector for Production of Baculovirus Occlusion Bodies that Contain Novel Recombinant Crystal Protein

  • Shim, Hee-Jin;Choi, Jae-Young;Roh, Jong-Yul;Li, Ming Shun;Je, Yeon Ho
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.118-119
    • /
    • 2003
  • Baculovirus occlusion bodies have been recently engineered to incorporate foreign protein such as the Bacillus thuringiensis (Bt) CrylAc protein for improvement of insecticidal activity. In this study, polyhedrin, cylAc, egfp and crylCa genes were fused to produce occlusion bodies that contain novel recombinant crystal protein by homologous recombination between cylAc and crylCa genes in insect cells. (omitted)

  • PDF

Mobilization of Proteins in the Cotyledons of Germinating Soybeans(Glycine max) (발아중인 대두 (Glycine max)에서의 단백질 유동)

  • Song, Young-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.650-658
    • /
    • 1988
  • The mobilization of proteins in the cotyledons of germinating soybean seeds (Glycine mar [L.] Merr.) and seedlings was studied by using light microscopy and transmission electron microscopy. The cotyledon tissues of soybean. were packed with protein bodies(diameter $0.1-15{\mu}m$) where storage protein of soybean is deposited. Degradation of protein bodies started in the epidermis and vascular tissues. After swelling of the protein bodies, autolysis of storage proteins began while the external membrane remained unbroken. Hydrolysis of proteins could be internal or peripheral and fusion might begin before complete protein degradation. Possible instances of vacuolar fusion were encountered in some cells. In all cases, the result of degradation was the same; the central vacuole of the cell. At the late stages of seedling growth, breakdown of tonoplast was observed in some cells.

  • PDF